Bronchopulmonary Dysplasia (BPD)

National Organization for Rare Disorders, Inc.

Skip to the navigation


It is possible that the main title of the report Bronchopulmonary Dysplasia (BPD) is not the name you expected. Please check the synonyms listing to find the alternate name(s) and disorder subdivision(s) covered by this report.


  • BPD

Disorder Subdivisions

  • None

General Discussion

Bronchopulmonary dysplasia (BPD) is a chronic respiratory disease that most often occurs in low-weight or premature infants who have received supplemental oxygen or have spent long periods of time on a breathing machine (mechanical ventilation), such as infants who have acute respiratory distress syndrome. BPD can also occur in older infants who experience abnormal lung development or some infants that have had an infection before birth (antenatal infection). Affected infants may have rapid, labored breathing and bluish discoloration of the skin due to low levels of oxygen in the blood (cyanosis). Infants are not born with BPD, the condition results from damage to the lungs. Most infants fully recover from BPD. However, the condition can cause serious complications during infancy and often requires hospitalization and intensive medical care.

The survival of low birth weight infants has improved steadily over the past few decades. Many infants diagnosed with BPD today are born at far earlier gestational ages than in the past. Researchers believe that these cases of BPD are less associated with injury and repair to the lungs and more likely represent an underlying disruption or abnormality affecting the development of the lungs. These infants may require chronic oxygen supplementation even without developing acute respiratory distress syndrome. These cases are sometimes referred to as "new" BPD.


Some infants who develop BPD have a condition called respiratory distress syndrome (RSD), which is a breathing disorder that affects some premature infants. It is characterized by rapid, shallow breathing.

Affected infants may also exhibit shortness of breath, a chronic cough, flaring of the nostrils when breathing, and bluish discoloration of the skin due to low levels of oxygen in the blood (cyanosis). Some infants may grunt when breathing out (exhaling). Additional symptoms may include abnormally fast breathing (tachypnea), wheezing, or a "crackling" or "rattling" sound that is heard in the lungs when inhaling.

In most cases, infants with BPD recover fully and damage to the lungs heals. In a few rare cases, BPD can cause life-threatening complications during infancy such as high blood pressure of the main artery of the lungs (pulmonary hypertension) and failure of the right side of the heart (cor pulmonale).

As affected infants and children grow, they may be at a greater risk than the general population of developing asthma, respiratory infections, or viral pneumonia.


BPD is caused by damage to the delicate tissue of the lungs. This damage is most often occurs in infants who have required extended treatment with supplemental oxygen or breathing assistance with a machine (mechanical ventilation) such as infants who are born prematurely and have acute respiratory distress syndrome.

When infants receive mechanical ventilation, a tube is inserted through the windpipe and the machine pushes air into the lungs, which are often underdeveloped in premature infants. In some cases, the levels of oxygen required for an affected infant to survive are higher than normally would be found in the air we breathe. Over time, the constant pressure from the ventilator and the excess oxygen levels can damage the delicate tissues of an infant's lungs causing inflammation and scarring.

Although many cases of BPD are associated with mechanical ventilation or excess oxygen levels, BPD can arise from other conditions that affect the development of the lungs such as infection that occurs before birth (antenatal infection). In rare cases, some older infants who experience abnormal lung development can also develop BPD.

Infants who have patent ductus arteriosus are at a greater risk than other infants of developing BPD. Patent ductus arteriosis is a congenital heart defect in which the passage (ductus) between the blood vessel that leads to the lungs (pulmonary artery) and the major artery of the body (aorta) fails to close after birth. Infants with this condition may require supplemental oxygen or mechanical ventilation.

Additional factors that may cause BPD in some cases include the maternal use of drugs or smoking during pregnancy and inflammation of the fetal membranes (chorioamnionitis).

Many infants now diagnosed with BPD are born at earlier gestational age than in the past. These cases are sometimes referred to as "new BPD". These cases generally have less inflammation and scarring than in classic BPD. These cases are believed to be less associated with mechanical ventilation and damage to the lungs and more likely due to disrupted or abnormal lung development. Researchers theorize that the formation of new blood vessels (angiogenesis) is abnormal or disrupted in infants with "new" BPD. Lung angiogenesis plays a key role in the development of the lung's alveoli, which are thin, capillary-rich sacs in the lungs where the exchange of oxygen and carbon dioxide takes place. Capillaries are very small blood vessels. Researchers believe that disrupted lung angiogenesis impairs the proper development of the alveoli, which contributes to the development of BPD in some cases.

The exact, underlying mechanisms that cause classic or new BPD are complex and not fully understood. The causes of BPD in one infant may be different from the causes in another. Most likely, multiple different environmental and genetic factors all play a role in the development of the disorder. Some individuals may have a genetic predisposition to developing BPD. A person who is genetically predisposed to a disorder carries a gene (or genes) for the disease, but it may not be expressed unless it is triggered or "activated" under certain circumstances, such as due to particular environmental factors (multifactorial inheritance). More research is necessary to determine the exact causes and underlying mechanisms involved in the development of the BPD.

Affected Populations

Bronchopulmonary dysplasia affects males and females in equal numbers. The exact incidence of BPD is unknown. The National Institutes of Health estimates that 5,000-10,000 babies born in the United States develop BPD each year. The risk of developing BPD increases the earlier a baby is born and the lower the birth weight. Infants born weighing less than 2.2 pounds are at the greatest risk for developing BPD. The number of cases of BPD has been increasing most likely because of modern advances in medicine, which have enabled doctors to keep more low birth weight, premature babies alive than in the past. BPD was first described in the medical literature in 1967.

Standard Therapies


A diagnosis of BPD is made based upon identification of characteristic symptoms, a detailed patient history, a thorough clinical evaluation and a variety of specialized tests including blood tests, chest x-rays, and echocardiograms. Blood tests may show low levels of oxygen in the blood. Chest x-rays may show distinctive changes in the lungs including abnormal development of the lungs. An echocardiogram is used to rule out other conditions that can cause breathing difficulties in infants such as congenital heart defects. During an echocardiogram, sound waves are directed toward the heart, enabling physicians to study cardiac function and motion.


The lungs of infants with respiratory distress syndrome and underdeveloped and cannot produce enough surfactant, which is a substance secreted by the tiny air sacs (alveoli) of the lungs that serves to reduce the tension of pulmonary fluids. These infants may be treated with surfactant-replacement therapy, which may be able to prevent the development of BPD in some cases.

Infants with respiratory distress syndrome are also treated with mechanical ventilation and oxygen supplementation. Continued medical advances have lessened the risk of damage to infants' lungs during these therapies and lowered the risk of these infants developing BPD.


The treatment for infants with BPD is geared toward minimizing damage to the lungs and providing enough support to allow an affected infant's lungs heal and grow. The specific therapies used may change as an affected infant grows and the clinical picture changes.

Newborns with BPS usually receive care in the hospital. Treatment may include mechanical ventilation. Ventilators are only used when absolutely necessary and affected infants are taken off as early as possible. Some infants may require supplemental oxygen after being taking off mechanical ventilation. Proper nutritional management is also necessary to ensure the proper growth and development of the lungs. Some affected infants may require the insertion of a gastrointestinal (GI) tube directly into the stomach to ensure the sufficient intake of calories and nutrients. Because infants with BPD are at risk for the accumulation of excess fluid in the lungs, daily fluid intake may be monitored and adjusted.

Infants with BPD may receive different medications including bronchodilators, diuretics and antibiotics. Bronchodilators are medications that widen the airway tubes and improve the flow of air through the lungs. Diuretics are medications that reduce the amount of water in the body and may be administered to help remove excess fluid in the lungs. Antibiotics are used to help control infections and prevent pneumonia.

Infants with BPD may spend several weeks or even months in the hospital. In most cases, lung function and development gradually improves, although it is often a slow process. After leaving the hospital, infants require proper nutrition, should avoid cigarette smoke and should receive regular follow up checkups from their pediatrician. Some infants may require supplemental oxygen or nutritional supplementation even after returning home.

Infants with BPD remain at a greater risk of developing respiratory infections and pneumonia than the general population. They should avoid individuals who have upper respiratory infections. In some cases, affected infants may receive preventive therapy with palivizumab, an antibody that protects against respiratory syncytial virus (RSV) infection. RSV is a common and contagious winter infection that can potentially cause pneumonia.

Investigational Therapies

In infants with severe forms of BPD, treatment with a short course of steroids may be necessary. Steroids may also be used in infants at risk of developing BPD. Steroids are powerfully anti-inflammatory drugs. Studies have shown that low-dose, short-term therapy with steroids has improved lung function and neurodevelopmental outcomes. However, steroid therapy can be associated with a variety of side-effects. More research is necessary to determine the safest and most effective dose, timing and length of steroid therapy for infants with BPD. More research is necessary to determine the long-term consequences of steroid therapy as well.

Inhaled nitric oxide therapy is being studied to determine what role, if any, it may play in preventing the development of BPD in at-risk infants. Nitric oxide is a vasodilator, a drug that relaxes the smooth muscles of blood vessels causing the vessels to widen. Inhaled nitric oxide may be able to improve ventilation and decrease inflammation in children at risk for BPD. More research is necessary to determine the long-term safety and effectiveness of inhaled nitric oxide as a potential preventive therapy for infants at risk of developing BPD.

Information on current clinical trials is posted on the Internet at All studies receiving U.S. Government funding, and some supported by private industry, are posted on this government web site.

For information about clinical trials being conducted at the NIH Clinical Center in Bethesda, MD, contact the NIH Patient Recruitment Office:

Tollfree: (800) 411-1222

TTY: (866) 411-1010


For information about clinical trials sponsored by private sources, contact:



Abman, SH. Bronchopulmonay Dysplasia. New York, NY: Informa Healthcare USA, Inc. 2010.

The Merck Manual, 15th Ed.: R. Berkow, ed.-in-chief; Merck & Co., Inc., 1987. Pp. 1870-71.

Pulmonary Disease And Disorders. 2nd Ed.: Alfred P. Fishman, M.D., et al.; Editors; McGraw-Hill Book Company., 1988. Pp. 2261-62.


Flat Chest In Chronic Bronchopulmonary Dysplasia. D.K. Edward, et al.; Am J Roentgenol (February, 1988, issue 150 (2)). Pp. 1213-6.

Antireflux Surgery In Infants With Bronchopulmonary Dysplasia. R.M. Giuffre, et al.; Am J Dis Child (June, 1987, issue 141 (6)). Pp. 648-51.

Response Of Pulmonary Mechanics To Terbutaline In Patients With Bronchopulmonary Dysplasia. D.S. Brudno, et al.; Am J Med Sci (March, 1989, issue 297 (3)). Pp. 166-8.

Late Pulmonary Sequelae Of Bronchopulmonary Dysplasia. W.H. Northway Jr., et al.; N Engl J Med (December, 1990, issue 323 (26)). Pp. 1793-9.


March of Dimes Birth Defects Foundation

1275 Mamaroneck Avenue

White Plains, NY 10605

Tel: (914)997-4488

Fax: (914)997-4763


American Lung Association

1301 Pennsylvania Ave NW

Suite 800

Washington, DC 20004


Tel: (202)785-3355

Fax: (202)452-1805

Tel: (800)586-4872



NIH/National Heart, Lung and Blood Institute

P.O. Box 30105

Bethesda, MD 20892-0105

Tel: (301)592-8573

Fax: (301)251-1223



British Lung Foundation

73-75 Goswell Road

London, EC1V 7ER

United Kingdom

Tel: 02076885555

Tel: 03000030555



NIH/National Institute of Child Health and Human Development

31 Center Dr

Building 31, Room 2A32


Bethesda, MD 20892

Fax: (866)760-5947

Tel: (800)370-2943

TDD: (888)320-6942



Genetic and Rare Diseases (GARD) Information Center

PO Box 8126

Gaithersburg, MD 20898-8126

Tel: (301)251-4925

Fax: (301)251-4911

Tel: (888)205-2311

TDD: (888)205-3223


For a Complete Report

This is an abstract of a report from the National Organization for Rare Disorders, Inc.® (NORD). Cigna members can access the complete report by logging into For non-Cigna members, a copy of the complete report can be obtained for a small fee by visiting the NORD website. The complete report contains additional information including symptoms, causes, affected population, related disorders, standard and investigational treatments (if available), and references from medical literature. For a full-text version of this topic, see