Carnitine Palmitoyltransferase 1A Deficiency

National Organization for Rare Disorders, Inc.

Skip to the navigation


It is possible that the main title of the report Carnitine Palmitoyltransferase 1A Deficiency is not the name you expected. Please check the synonyms listing to find the alternate name(s) and disorder subdivision(s) covered by this report.


  • Hepatic CPT1
  • CPT 1A Deficiency
  • Hepatic Carnitine Palmitoyltransferase 1 Deficiency
  • L-CPT1 Deficiency

Disorder Subdivisions

  • None

General Discussion

Carnitine palmitoyltransferase 1A deficiency (CPT1A) is characterized by a sudden onset of liver failure and damage to the nervous system resulting from liver failure (hepatic encephalopathy), usually associated with fasting or illness. CPT1A deficiency is caused by an abnormality (mutation) in the CPT1A gene that results in the production of an abnormally functioning carnitine palmitoyltransferase 1 enzyme and decreased metabolism of long-chain fatty acids. CPT1A deficiency is inherited as an autosomal recessive genetic disorder.


Three types of CPT1A deficiency have been recognized: The hepatic encephalopathy type usually occurs in children and is associated with a low level of ketones in the blood, low blood sugar (hypoglycemia), enlarged liver, muscle weakness and elevated carnitine in the blood. The adult-onset myopathy type is characterized by a sudden onset of muscle cramping associated with exercise without low blood sugar or liver dysfunction. The third type is acute fatty liver of pregnancy that occurs when a pregnant woman with one abnormal CPT1A gene carries a fetus with two abnormal CPT1A genes and is associated with liver failure in the mother.


CPT1A deficiency is caused by a mistake in the code for the CPT1A gene (mutation) resulting in decreased carnitine palmitoyltransferase 1 enzyme activity preventing normal metabolism of long-chain fatty acids from food and stored fat and decreased energy production.

CPT1A deficiency is inherited as an autosomal recessive genetic disorder with a 25% recurrence risk for future children to be affected. Autosomal recessive genetic diseases occur when each parent carries a mutation on the same gene (carrier) and each parent passes the mutated gene on to the child, giving the child no normal gene to compensate for the mutations.

If an individual receives one normal gene and one gene for the disease, the person will be a carrier for the disease, but usually will not show symptoms. The risk for two carrier parents to both pass the defective gene and, therefore, have an affected child is 25% with each pregnancy. The risk to have a child who is a carrier like the parents is 50% with each pregnancy. The chance for a child to receive normal genes from both parents and be genetically normal for that particular trait is 25%. The risk is the same for males and females.

All individuals carry nearly 30 gene mutations. Usually, the parents do not match on the genes mutated and the children cannot be affected. Parents who are close relatives (consanguineous) have a higher chance than unrelated parents to be carrying the same abnormal gene, increasing their risk to have children with a recessive genetic disorder.

Affected Populations

CPT1A deficiency has been reported in approximately 30-40 individuals. The incidence of this condition may be higher in the Hutterite populations in the northern United States and Canada and the Inuit populations in northern Canada, Alaska and Greenland. This condition occurs with equal frequency in males and females.

Standard Therapies


CPT1A deficiency is diagnosed by a combination of physical symptoms and laboratory testing. The typical laboratory findings include low levels of ketones, elevated liver transaminases, elevated ammonia and elevated total serum carnitine. CPT1A enzyme activity on the cultured skin cells from affected individuals is 1-5% of normal. Molecular genetic testing is available to confirm the diagnosis if the enzyme test is abnormal. Some state newborn screening programs perform screening for CPT1A deficiency by measuring the ratio of free to total carnitine in blood plasma or serum. Carrier testing for relatives is available using CPT1A enzyme testing or molecular genetic testing.


Prevention of hypoglycemia is recommended to reduce the risk of neurological effects. This can be accomplished with a high carbohydrate, low fat diet and frequent feeding. If acute hypoglycemia occurs, intravenous dextrose should be provided. Individuals with CPT1A deficiency should have regular liver function testing performed. Female carriers of an abnormal CPT1A gene should be informed about the possibility of obstetric complications.

Investigational Therapies

Information on current clinical trials is posted on the Internet at All studies receiving U.S. government funding, and some supported by private industry, are posted on this government website.

For information about clinical trials being conducted at the National Institutes of Health (NIH) in Bethesda, MD, contact the NIH Patient Recruitment Office:

Tollfree: (800) 411-1222

TTY: (866) 411-1010


nformation on current clinical trials is posted on the Internet at All studies receiving U.S. government funding, and some supported by private industry, are posted on this government web site.

For information about clinical trials being conducted at the NIH Clinical Center in Bethesda, MD, contact the NIH Patient Recruitment Office:

Tollfree: (800) 411-1222

TTY: (866) 411-1010


For information about clinical trials sponsored by private sources, contact:

Research on inborn errors of metabolism is ongoing. Scientists are studying the causes of these disorders and trying to design enzyme replacement therapies that will return a missing enzyme to the body.



Fauci AS, Braunwald E, Isselbacher KJ, et al. Eds. Harrison's Principles of Internal Medicine. 14th ed.McGraw-Hill Companies. New York, NY; 1998:2479.

Scriver CR, Beaudet AL, Sly WS, et al. Eds. The Metabolic Molecular Basis of Inherited Disease. 8th ed. McGraw-Hill Companies. New York, NY; 2001:2305, 2317-18.

Adams RD, Victor M, Ropper AA. Eds. Principles of Neurology. 6th ed. McGraw-Hill Companies. New York, NY; 1997:1438-39.

Lyon G, Adams RD, Kolodny EH. Eds. Neurology of Hereditary Metabolic Diseases in Childhood. 2nd ed. McGraw-Hill Companies. New York, NY; 1996:27,28,101.


McGarry JD. Travels between carnitine palmitoyltransferase I: from liver cell to germ cell with stops in between. Biochem Soc Trans. 2001;20 (Pt2):241-45.

Vockley J, Rinaldo P, Bennett MJ, et al. Synergistic heterozygosity: disease resulting from multi[ple partial defects in one or more metabolic pathways. Mol Genet Metab. 2000;71:10-18.

Bonnefont JP, Demaugre F, Prip-Buus C, et al. Carnitine palmitoyltransferase deficiencies. Mol Genet Metab. 1999;68:424-40.

Tein I. Neonatal metabolic myopathies. Semin Perinatol. 1999;23:125-51.


Morillas M, Lopez-Vinas E, Valencia A, et al. Structural model of carnitine palmitoyltransferase I based on the carnitine-acetyltransferase crystal. Biochem J. 2004;379(Pt3):777-84.

Gobin S, Thuillier L, Jogl G, et al. Functional and structural basis of carnitine palmitoyltransferase 1A deficiency. J Biol Chem. 2003;278:50428-434.

Shigematsu Y, Hirano S, Hata I, et al. Selective screening for fatty acid oxidation disorders by tandem mass spectrometry: difficulties in practical discrimination. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;15:63-72.

Gobin S, Bonnefont JP, Prip-Buus C, et al. Organization of the human liver carnitine palmitoyltransferase 1 gene (CPT1A) and identification of novel mutations in hypoketotic hypoglycaemia. Hum Genet. 2002;111:179-89.

Invernizzi F, Burlin AB, Donadio A, et al. Lethal neonatal presentation of carnitine palmitoyltransferase I deficiency. J Inherit Metab Dis. 2001;24:601-02.


Bennett, MJ and Narayan SB, (Posted 7/27/05). Carnitine Palmitoyltransferase 1A Deficiency. In GeneReviews at Genetests:Medical Genetics Information Resource (database online). Copyright, University of Washington, Seattle. 1997-2006. Available at Accessed 3/06.

McKusick VA, ed. Online Mendelian Inheritance In Man (OMIM). The Johns Hopkins University. Carnitine Palmitoyltransferase I Deficiency. Number; 255120: Last Edit Date; 8/23/2004.

McKusick VA, ed. Online Mendelian Inheritance In Man (OMIM). The Johns Hopkins University. Carnitine Palmitoyltransferase I, Muscle; CPT1B Entry Number; 601987: Last Edit Date; 8/6/2002.

Vladutiu GD. Mind Over Matter: The Realities of a Common Muscle Disease. ©1999-2004 FOD Support Family Support Group. 4pp.

Vladutiu GD. Fundamental differences [between CPT-I and CPT-II]. ©1999-2000. The Spiral Notebook. 2pp.

Roe CR. Diagnostic Approach to Disorders of Fat Oxidation/Information for Clinicians. ©1999-2004 FOD Support Family Support Group. 11pp.

Bonnefort J-P, Thullier L. Carnitine palmitoyltransferase 1 deficiency. Orphanet. April 2002. 2pp.


CLIMB (Children Living with Inherited Metabolic Diseases)

Climb Building

176 Nantwich Road

Crewe, CW2 6BG

United Kingdom

Tel: 4408452412173

Fax: 4408452412174



Muscular Dystrophy Association

3300 East Sunrise Drive

Tucson, AZ 85718-3208


Tel: (520)529-2000

Fax: (520)529-5300

Tel: (800)572-1717



NIH/National Institute of Diabetes, Digestive & Kidney Diseases

Office of Communications & Public Liaison

Bldg 31, Rm 9A06

31 Center Drive, MSC 2560

Bethesda, MD 20892-2560

Tel: (301)496-3583



FOD (Fatty Oxidation Disorders) Family Support Group

PO Box 54

Okemos, MI 48864


Tel: (517)381-1940

Fax: (866)290-5206



Genetic and Rare Diseases (GARD) Information Center

PO Box 8126

Gaithersburg, MD 20898-8126

Tel: (301)251-4925

Fax: (301)251-4911

Tel: (888)205-2311

TDD: (888)205-3223


For a Complete Report

This is an abstract of a report from the National Organization for Rare Disorders, Inc.® (NORD). Cigna members can access the complete report by logging into For non-Cigna members, a copy of the complete report can be obtained for a small fee by visiting the NORD website. The complete report contains additional information including symptoms, causes, affected population, related disorders, standard and investigational treatments (if available), and references from medical literature. For a full-text version of this topic, see