Cervical Dystonia

National Organization for Rare Disorders, Inc.

Skip to the navigation


It is possible that the main title of the report Cervical Dystonia is not the name you expected. Please check the synonyms listing to find the alternate name(s) and disorder subdivision(s) covered by this report.


  • torticollis
  • spasmodic wryneck
  • spasmodic torticollis
  • focal dystoniaidiopathic cervical dystonia

Disorder Subdivisions

  • None

General Discussion

Cervical dystonia, also known as spasmodic torticollis, is a rare neurological disorder characterized by involuntary muscle contractions in the neck that cause abnormal movements and postures of the neck and head. In some cases, these abnormal contractions may be sustained or continuous; in others, they may be present as spasms that can resemble tremor. The severity of cervical dystonia can vary, but the disorder can cause significant pain and discomfort as well as difficulty due to the abnormal postures. Cervical dystonia typically begins in middle age, and rarely begins in adolescence and young adulthood. The cause of cervical dystonia is unknown, although a genetic susceptibility is thought to underlie some cases. If cervical dystonia begins in infancy or early childhood, secondary causes should be investigated.

Cervical dystonia is the most common form of focal dystonia that presents in an office setting. Dystonia is generally characterized by involuntary muscle contractions that force the body into abnormal, sometimes painful, movements and positions (postures). Cervical dystonia is a form of dystonia that involves the neck area. Symptoms may vary among affected individuals, including the age at onset, intensity, presence of pain, and degree of disability.


The symptoms of cervical dystonia may begin slowly and can involve any of the muscles of the neck. The head posture in cervical dystonia can vary. The most common abnormal posture associated with cervical dystonia is the twisting of the chin toward a shoulder so that the head rotates sideways (torticollis). Other abnormal postures associated with cervical dystonia including anterocollis, in which the head tips forward; retrocollis, in which the head is tilted backward; or laterocollis, in which the head tilts toward one side. There can also be shifting of the head on the shoulders in a forward (anterior sagittal shift) or backward (posterior sagittal shift) direction. Often cervical dystonia is complex and combines several angles of head movement. In some people with primary CD, there may also be a postural tremor of the hands. Symptoms of cervical dystonia vary over the course of the disorder. Although it was once thought that after five years of symptoms, cervical dystonia will be stable, studies of the natural history of CD are lacking. Symptoms may temporarily worsen with stress or excitement, and often can have a posture or activity that worsens the symptoms. Symptoms may improve with the performance of sensory tricks, such as touching the cheek or the back of the head. A small percentage of individuals experience a spontaneous recovery (remission) after symptom onset. This remission is often temporary, lasting days to years, with recurrence of symptoms. It is likely that less than 1 percent of affected individuals have permanent remissions.

There can be secondary problems arising from cervical dystonia that include cervical spine arthritis, compression of nerve roots, and sometimes narrowing of the spinal cord in the neck (cervical stenosis). Pain related directly to cervical dystonia typically is on the same side as the head turn and is felt as muscular pain in the area of the overactive muscles. Pain can potentially become severe and disabling.


Cervical dystonia is sometimes classified as primary (no identifiable underlying cause) or secondary (occurring as consequence of another disorder or condition). In most cases, the cause of primary cervical dystonia is unknown (idiopathic) and there may not be a family history (sporadic). In approximately 10 to 25 percent of cases, there may be one or more family members with cervical dystonia suggesting that these individuals may have a genetic susceptibility to developing the disorder. A person who is genetically predisposed to a disorder carries a gene (or genes) for the disease, but it may not be expressed unless it is triggered or "activated" either by other genetic modifiers or environmental factors (complex genetics).

In some cases in which multiple family members have been affected, early-onset generalized dystonia may also be present. This form of dystonia may be associated with mutations in the DYT1 gene. The role, if any, that this gene plays in the development of sporadic cervical dystonia is likely minimal, and other gene mutations are likely to be involved. The DYT6 gene has been identified, and often presents with familial cervical dystonia associated with dystonic dysarthria, although the full role of this gene is not yet fully understood. Additional research is necessary to determine what genetic factors are associated with the cervical dystonia.

Several theories exists that attempt to explain the underlying mechanism of primary or idiopathic cervical dystonia including abnormal functioning of the basal ganglia or imbalances in neurotransmitters. Although the underlying mechanisms and causes of cervical dystonia are not well understood, research is ongoing to determine the specific roles that genetic, environmental and other factors ultimately play in the development of the disorder.

Some cases of cervical dystonia may have an identifiable cause (secondary cervical dystonia). In these cases, cervical dystonia may develop due to the use of certain drugs such as anti-psychotics, exposure to certain toxins such as heavy metals, neurodegenerative disease, or as part of a larger neurological disorder (often with abnormal functioning of the basal ganglia). In addition, there can be conditions such as atlanto-axial subluxation of the cervical spine that resembles dystonia, but is a structural disorder.

Trauma, either to the neck or the nervous system, as a cause of cervical dystonia, is controversial. Often, the cervical dystonia following trauma is fixed and painful. Whether there are psychiatric components to post-traumatic cervical dystonia has been discussed. The link between trauma and cervical dystonia, if it exists, is not fully understood.

Affected Populations

Cervical dystonia affects women approximately twice as often as men. It is the most common form of focal dystonia in an office setting. Cervical dystonia may affect individuals of any age, but typically develops in people between 40 and 60 years of age. Cervical dystonia affects people of all ethnic backgrounds. The exact incidence or prevalence of cervical dystonia in the general population is unknown.

Standard Therapies


A diagnosis of cervical dystonia is based upon clinical examination, a detailed patient history, and knowledge of the disorder. No specific laboratory or imaging test confirms a diagnosis of cervical dystonia. A variety of specialized tests including blood tests, electromyography and specialized imaging techniques such as magnetic resonance imaging may be used to rule out underlying conditions if indicated.


Not every treatment option for cervical dystonia is successful for all affected individuals. Therefore, no single strategy is appropriate for every case. Most therapies are symptomatic and are intended to relieve spasms, pain and disturbed postures or functions. Identifying the treatment regimen that is most effective in individual cases may require patience and perseverance on the part of the patient and physician.

There are essentially three treatment options: botulinum toxin injections, oral medications, and, in some cases, surgery. These treatments may be used alone or in combination. In addition, physical and speech therapy may provide a helpful complement to medical treatment. In some cases, a soft cervical collar has proven beneficial.

Botulinum toxin injections are the primary and most effective form of treatment for cervical dystonia. Botulinum toxin is a neurotoxin that is injected into muscles in very small doses. After injection into a muscle, the action of botulinum toxin is to interrupt nerve message to the muscle, and gives rise to weakness of that muscle. The effect of botulinum toxin on the muscle begins approximately 2-3 days following injection, peaks at around 4 weeks, and provides relief for approximately 3-6 months. When the effect of botulinum toxin wears off, the symptoms of cervical dystonia recur. In order for botulinum toxin injections to be successful, it is critical that the injecting physician be well-versed in cervical dystonia, the functional anatomy of the neck muscles, and the type and doses of botulinum toxin to use.

There are now four brands of Botulinum toxin that have been approved by the Food and Drug Administration (FDA) for the treatment of individuals with cervical dystonia. There are three brands of botulinum toxin serotype A, including unobotulinumtoxinA (BOTOX, Allergan Inc.) abobotulinumtoxinA (Dysport, Tercica Inc) and rimabotulinumtoxinA (Xeomin, Merz Pharmaceuticals). There is one formulation of botulinum toxin type B called rimabotulinumtoxinB (Myobloc, Solstice). These brands are not interchangeable, and each should be administered as a unique drug. The FDA has a "black box" warning concerning the use of any of these toxins.

There are no oral medications that are FDA approved for use in dystonia. Among the oral medications used, dopaminergic agents (levodopa), anticholinergic agents (benztropine, trihexyphenidyl), baclofen and clonazepam are the most frequently used. These drugs are usually most effective in children with generalized dystonia. In adults, side effects are often dose limiting.

Surgery is considered a last resort. Current studies suggest that deep brain stimulation surgery (DBS) is effective for cervical dystonia, although not as well investigated as DBS for generalized dystonia. DBS involves the surgical placement of very thin electrodes into both sides of the brain in an area called the globus pallidus. The electrodes are connected to stimulators which send small electrical pulses to the brain. After the DBS is placed, the stimulators are programmed for the optimal outcome.

Selective peripheral denervation in which the nerves to the dystonic muscles are severed has been reported to benefit patients with cervical dystonia who fail other therapies. However, this surgery requires a surgeon who is extensively trained both in the evaluation CD and in the surgical procedure. Side effects from the surgery are not uncommon and following surgery, there is a long period of rehabilitation.

Investigational Therapies

Information on current clinical trials is posted on the Internet at www.clinicaltrials.gov. All studies receiving U.S. Government funding, and some supported by private industry, are posted on this government web site.

For information about clinical trials being conducted at the NIH Clinical Center in Bethesda, MD, contact the NIH Patient Recruitment Office:

Tollfree: (800) 411-1222

TTY: (866) 411-1010

Email: prpl@cc.nih.gov

For information about clinical trials sponsored by private sources, contact:


For information about clinical trials conducted in Europe, contact:


Contact for additional information about cervical dystonia:

Cynthia L. Comella, MD, FAAN


Rush University Medical Center

Department of Neurological Sciences

1725 West Harrison St.

Suite 755

Chicago, Illinois 60612

Phone: 312-563-2900

Fax: 312-563-2024



Comella CL. Cervical Dystonia. In: Clinical Diagnosis and Management of Dystonia, Warner TT, Bressman SB, editors. 2007 Informa UK, Ltd, London. pp. 73-80.

DeLong MR. Cervical Dystonia (Spasmodic Torticollis). NORD Guide to Rare Disorders. Lippincott Williams & Wilkins. Philadelphia, PA. 2003:611.


Frevert J. Xeomin: an innovative new botulinum toxin type A. Eur J Neurol. 2009;16 Suppl 2:11-13.

Stacy M. Epidemiology, clinical presentation, and diagnosis of cervical dystonia. Neurol Clin. 2008; 26 Suppl 1:23-42.

Crowner BE. Cervical dystonia: disease profile and clinical management. Phys Ther. 2007;87:1511-1526.

Albanese A, Barnes MP, Bhatia KP, et al. A systemic review on the diagnosis and treatment of primary (idiopathic) dystonia and dystonia plus syndromes: report on EFNS/MDS-ES Task Force. Eur J Neurol. 2006;13:433-444.

Velickovic M, Benabou R, Brin MF. Cervical dystonia pathophysiology and treatment options. Drugs. 2001;61:1921-1943.

Brin MF, et al., Safety and efficacy of NeuroBloc (botulinmum toxin type B) in type A-resistant cervical dystonia. Neurology. 1999;53:1431-8.

Tarsy D, et al., Painful cervical dystonia: clinical features and response to treatment with botulinum toxin. Mov Disord. 1999;14:1043-5.

Moreau MS, et al., Static and dynamic balance function in spasmodic torticollis. Mov Disord. 1999;14:87-94.


Kruer, MC. Torticollis. Emedicine Journal, March 6, 2012. Available at: http://emedicine.medscape.com/article/1152543-overview Accessed:January 22, 2013.

National Institute of Neurological Disorders and Stoke. Dystonias Fact Sheet, November 20, 2012. Available at: http://www.ninds.nih.gov/disorders/dystonias/detail_dystonias.htm Accessed:January 22, 2013.

Mayo Clinic for Medical Education and Research. Cervical Dystonia, January89, 2011. Available at: http://www.mayoclinic.com/health/spasmodic-torticollis/DS00836 Accessed:January 22, 2013.


Dystonia Medical Research Foundation

1 East Wacker Drive, Suite 2810 East Wacker Drive

Suite 2810

Chicago, IL 60601-1905

United States

Tel: (312)755-0198

Fax: (312)803-0138

Tel: (800)377-3978

Email: dystonia@dystonia-foundation.org

Internet: http://www.dystonia-foundation.org

National Spasmodic Torticollis Association

9920 Talbert Avenue

Fountain Valley, CA 92708

Tel: (714)378-9837

Fax: (714)378-9830

Tel: (800)487-8385

Email: NSTAmail@aol.com

Internet: http://www.torticollis.org

NIH/National Institute of Neurological Disorders and Stroke

P.O. Box 5801

Bethesda, MD 20824

Tel: (301)496-5751

Fax: (301)402-2186

Tel: (800)352-9424

TDD: (301)468-5981

Internet: http://www.ninds.nih.gov/

Dystonia Society

89 Albert Embankment, 2nd Floor


London, SE1 7TP

United Kingdom

Tel: 08454586211

Fax: 08454586311

Tel: 08454586322

Email: angie@dystonia.org.uk

Internet: http://www.dystonia.org.uk

Dystonia Europe

Square de Meeus 37 - 4th Floor

Brussels, 1000


Tel: 447736625450

Email: sec@dystonia-europe.org

Internet: http://www.dystonia-europe.org

Genetic and Rare Diseases (GARD) Information Center

PO Box 8126

Gaithersburg, MD 20898-8126

Tel: (301)251-4925

Fax: (301)251-4911

Tel: (888)205-2311

TDD: (888)205-3223

Internet: http://rarediseases.info.nih.gov/GARD/

Spasmodic Torticollis ST/Dystonia, Inc.

PO Box 28

Mukwonago, WI 53149

Tel: (262)560-9534

Fax: (262)560-9535

Tel: (888)445-4588

Email: info@spasmodictorticollis.org

Internet: http://www.spasmodictorticollis.org

American Dystonia Society

17 Suffolk Lane

Suite 1

Princeton Junction, NJ 08550

Tel: (310)237-5478

Fax: (609)275-5663

Email: info@dystonia.us

Internet: http://www.dystonia.us

For a Complete Report

This is an abstract of a report from the National Organization for Rare Disorders, Inc.® (NORD). Cigna members can access the complete report by logging into myCigna.com. For non-Cigna members, a copy of the complete report can be obtained for a small fee by visiting the NORD website. The complete report contains additional information including symptoms, causes, affected population, related disorders, standard and investigational treatments (if available), and references from medical literature. For a full-text version of this topic, see http://www.rarediseases.org/search/rdblist.html.