Duane syndrome

National Organization for Rare Disorders, Inc.

Skip to the navigation


It is possible that the main title of the report Duane syndrome is not the name you expected. Please check the synonyms listing to find the alternate name(s) and disorder subdivision(s) covered by this report.


  • DR syndrome
  • Duane radial ray syndrome (DRRS)
  • Duane's retraction syndrome
  • eye retraction syndrome
  • retraction syndrome
  • Stilling-Turk-Duane syndrome

Disorder Subdivisions

  • None

General Discussion

Duane syndrome (DS) is an eye movement disorder present at birth (congenital) characterized by horizontal eye movement limitation [a limited ability to move the eye inward toward the nose (adduction), outward toward the ear (abduction), or in both directions]. In addition, when the affected eye(s) moves inward toward the nose, the eyeball retracts (pulls in) and the eye opening (palpebral fissure) narrows. In some cases, when the eye attempts to look inward, it moves upward (upshoot) or downward (downshoot).

Duane syndrome falls under the larger heading of strabismus (misalignment of the eyes) under the subclassification of incomitant strabismus (misalignment of the eyes that varies with gaze directions) and subheading of what was previously termed extraocular fibrosis syndromes (conditions associated with fibrosis of the muscles that move the eyes), now termed Congenital Cranial Dysinnervation Disorders (CCDDs). The CCDDs are a group of congenital neuromuscular diseases resulting from developmental errors in innervation, the abnormalities involve one or more cranial nerves/nuclei with absence of normal innervation and/or secondary aberrant innervation. The group includes Duane syndrome, congenital fibrosis of the extraocular muscles (CFEOM), congenital ptosis, Marcus Gunn Jaw winking, Möbius syndrome, Crocodile tears, horizontal gaze palsy and congenital facial palsy, but this is not an exhaustive list.

Duane syndrome has been subdivided clinically into three types: Type 1, Type 2, and Type 3.


The three types of Duane syndrome present as follows:

Duane syndrome Type 1: The ability to move the affected eye(s) outward toward the ear (abduction) is limited, but the ability to move the affected eye(s) inward toward the nose (adduction) is normal or nearly so. The eye opening (palpebral fissure) narrows and the eyeball retracts into the orbit when looking inward toward the nose (adduction). When looking outward toward the ear (abduction), the reverse occurs.

Duane syndrome Type 2: The ability to move the affected eye(s) inward toward the nose (adduction) is limited, whereas the ability to move the eye outward (abduction) is normal or only slightly limited. The eye opening (palpebral fissure) narrows and the eyeball retracts into the orbit when the affected eye(s) attempts to look inward toward the nose (adduction).

Duane syndrome Type 3: The ability to move the affected eye(s) both inward toward the nose (adduction) and outward toward the ear (abduction) is limited. The eye opening narrows and the eyeball retracts when the affected eye(s) attempts to look inward toward the nose (adduction).

Each of these three types has been further classified into three subgroups designated A, B, and C to describe the eyes when looking straight (in primary gaze). In subgroup A, the affected eye is turned inward toward the nose (esotropia). In subgroup B, the affected eye is turned outward toward the ear (exotropia), and in subgroup C, the eyes are in a straight primary position.

Different clinical types may be present within the same family, suggesting that the same genetic defect may produce a range of clinical presentations.

The most common clinical presentation is Type 1 DS (78 percent of cases) followed by Type 3 (15 percent) and Type 2 (7 percent). Involvement of both eyes (bilateral) is less common than involvement of one eye only (unilateral). Approximately 80-90 percent of cases are unilateral. Of the unilateral cases, the left eye is more often affected (72 percent). Amblyopia (reduced visual acuity in an eye) due to a lack of binocular vision occurs in about 10% of DS cases and is more common in familial autosomal dominant CHN1 gene familial cases.

Duane syndrome is usually an isolated finding (approximately 70 percent), but may be associated with other malformations. Major anomalies associated with DS can be grouped into five categories: skeletal, auricular (having to do with the ears), ocular (having to do with the eyes) and neural (having to do with the nervous system) and renal (having to do with the kidneys and urinary tract).

DS can also be associated with other well-defined syndromes. These include Okihiro's, Wildervanck, Holt-Oram, Goldenhar and Möbius syndromes.


The majority of Duane syndrome cases are sporadic in origin, with only approximately ten percent of patients showing a familial pattern (running in families). Both dominant (most common) and recessive forms of DS have been documented. In some families with dominant DS, it has skipped a generation (shown reduced penetrance) and ranged in severity within the same family (shown variable expressivity). Most familial cases are not associated with other anomalies.

DS is a Congenital Cranial Dysinnervation Disorder (CCDD), see earlier. Genetic, and possibly environmental factors, are known to play a role.

Data to support abnormal development of cranial nerve VI (abducens nerve) in DS come from neuropathological, neuroradiological, and neurophysiological evidence. Neuropathological evidence comes from autopsies of individuals with DS. Such autopsies show abnormal innervation of the lateral rectus muscle (the muscle that moves the eye outward toward the ear) and an absence of the abducens nerve (cranial nerve VI), which normally supplies the lateral rectus muscle. In place of the abducens nerve was a nerve branch from the oculomotor nerve (cranial nerve III), which normally supplies other ocular muscles. Recent neuroradiological studies in DS support the postmortem findings and also show, by magnetic resonance imaging (MRI) studies, an absence of the abducens nerve (cranial nerve VI).

Neurophysiological evidence for neuronal involvement in DS comes from electromyographic (EMG) studies, which show that the medial and lateral recti muscles are electrically active in individuals with DS. When individuals with DS attempt to move their eyes inward, both of these muscles contract at the same time, resulting in the eyeball retracting inward (pulling in) and the eye opening narrowing.

Genetic linkage studies of two large DS families (with affected members having type 1 and/or type 3 DS inherited autosomal dominantly) without associated abnormalities established the location of a DS gene on chromosome 2. Mutations in the CHN1 gene are the cause, hyperactivating a2-chimaerin, and mutations have been found in a further eight families.

A genetic cause for individuals with DRRS (Duane radial ray syndrome; Okihiro Syndrome), that is Duane syndrome (unilateral or bilateral) with a skeletal change of radial dysplasia (unilateral or bilateral) ranging from most commonly thumb hypoplasia to most severely a phocomelic limb (similar to that seen in thalidomide cases), has been found. Other features include deafness, renal and ocular manifestations. Inheritance is autosomal dominant. Truncating mutations and SALL4 gene deletions have been identified in DRRS families, there is haploinsufficiency (the level of the protein is not sufficient for normal functioning). No SALL4 gene mutations were found in 25 sporadic cases of isolated DS.

DS can also be found as part of a complex autosomal recessive disorder that can include deafness, facial weakness, vascular malformations and leaning difficulties due to homozygous mutations in the HOXA1 gene.

In addition, cytogenetic results (a study of chromosomes) of individuals with Duane syndrome and other abnormalities have, in rare cases, shown abnormalities that suggest other locations for genes responsible for causing DS. Deletions of chromosomal material on chromosomes 1, 4, 5 and 8, and the presence of an extra marker chromosome thought to be derived from chromosome 22, have been documented in DS individuals. In addition DS has recently been reported with chromosomal duplications.

Given the evidence that DS results from an absence of the abducens nerve (cranial nerve VI) and aberrant innervation, and that DS is associated with other anomalies in some cases, it is thought that DS results from a disturbance of normal embryonic development by either a genetic or an environmental factor at the time when the cranial nerves and ocular muscles are developing (between the third and sixth week of pregnancy).

Affected Populations

Duane syndrome has been seen in diverse ethnic groups. The frequency of DS in the general population of individuals with eye movement disorders (strabismus) is approximately one to 5 percent. Most individuals are diagnosed by the age of 10 years. The female to male ratio of individuals with DS is 60:40, showing a slightly higher preponderance of female patients.

Standard Therapies

Clinical Evaluation

When the presence of DS is suspected, a thorough ocular (eye) examination is required, with special attention to the presence of other ocular or systemic malformations. Measurements of the ocular misalignment, ocular range of motion, head turn, globe (eyeball) retraction, palpebral fissure (eye opening) size, upshoots and downshoots and visual acuity are indicated. In addition, an examination of the cervical (neck) and thoracic (chest) spine, palate (roof of mouth), vertebrae, hands, and a hearing test is recommended to rule out disorders associated with DS.


The standard management of Duane syndrome may involve observation, treatment of amblyopia (such as patching of the better seeing eye) or possibly surgery. The goal of surgery is the elimination or improvement of an unacceptable head turn, the elimination or reduction of significant misalignment of the eyes, the reduction of severe retraction, and the improvement of upshoots and downshoots. Surgery does not eliminate the fundamental abnormality of innervation and no surgical technique has been completely successful in eliminating the abnormal eye movements. Simple horizontal muscle recession procedures, vertical rectus muscle transposition procedures, or combinations of the two may be successful in improving or eliminating head turns and misalignment of the eyes. The choice of procedure must be individualized.

Investigational Therapies

Information on current clinical trials is posted on the Internet at www.clinicaltrials.gov. All studies receiving U.S. government funding, and some supported by private industry, are posted on this government web site.

For information about clinical trials being conducted at the NIH Clinical Center in Bethesda, MD, contact the NIH Patient Recruitment Office:

Tollfree: (800) 411-1222

TTY: (866) 411-1010

Email: prpl@cc.nih.gov

For information about clinical trials sponsored by private sources, contact:




Chan WM et al. Two novel CHN1 mutations in 2 families with Duane retraction syndrome. Arch Ophthalmol. 2011; 129 :649-52.

Miyake N et al. Expansion of the CHN1 strabismus phenotype. Invest Ophthalmol Vis Sci. 2011; 52 :6321-8.

Weis A, Bialer MG, Kodsi S. Duane syndrome in association with 48,XXYY karyotype. J AAPOS. 2011 ;15 :295-6.

Bayrakli F et al. Heterozygous 5p13.3-13.2 deletion in a patient with type I Chiari malformation and bilateral Duane retraction syndrome. Clin Genet. 2010; 77: 499-502.

Smith SB, Traboulsi EI. Duane syndrome in the setting of chromosomal duplications. Am J Ophthalmol. 2010; 150: 932-8.

Stark Z et al. Atypical Silver-Russell phenotype resulting from maternal uniparental disomy of chromosome 7. Am J Med Genet A. 2010; 152A: 2342-5.

Miyake N, et al. Human CHN1 mutations hyperactivate a2-chimaerin and cause Duane's retraction syndrome. Science 2008; 321: 839-843.

Kato Z, Yamagishi A, Kondo N. Interstitial deletion of 1q42.13-q43 with Duane retraction syndrome. J AAPOS. 2007 Feb;11(1):62-4.

Kim, JH, Hwang, J-M. Presence of the abducens nerve according to the type of Duane's retraction syndrome. Ophthalmology 2005;112:109-113.

Tischfield MA et al. Homozygous HOXA1 mutations disrupt human brainstem, inner ear, cardiovascular and cognitive development. Nat Genet. 2005 Oct;37(10):1035-7.

Gutowski NJ, Bosley T, Engle E. The Congenital Cranial Dysinnervation Disorders (CCDDs). Neuromuscular Disorders 2003; 13: 573-578.

Al-Baradie R. et al. Duane Radial Ray Syndrome (Okihiro Syndrome) Maps to 20q13 and Results from Mutations in SALL4, a New Member of the SAL Family. Am J Hum Genet 2002; 71: 1195-1199.

Kohlhase J et al. Okihiro syndrome is caused by SALL4 mutations. Hum Mol Genet 2002; 11: 2979-2987.

Evans JC, Frayling TM, Ellard S and Gutowski NJ. Confirmation of linkage of Duane's syndrome and refinement of the disease locus to an 8.8cM interval on chromosome 2q31. Hum. Genet. 2000: 106: 636-638.

Gutowski N. Duane's syndrome. Eur J Neurol 2000; 7: 145-149.

Appukuttan B., et al., Localization of a gene for Duane retraction syndrome to chromosome 2q31. Am J Hum Genet. 1999;65:1639-46.

Parsa CF, et al., Absence of the abducens nerve in Duane syndrome verified by magnetic resonance imaging. Am J Ophthalmol. 1998;125:399-401.

Chew CKS, et al., Duane's retraction syndrome associated with chromosome 4q27-31 segment deletion. Am J Ophthalmol. 1998;119:807-09.

Vincent C, et al., A proposed new contiguous gene syndrome on 8q consists of bronchio-oto-renal (BOR) syndrome, Duane syndrome, a dominant form of hydrocephalus and trapeze aplasia; implications for the mapping of the BOR gene. Hum Mol Genet. 1994;3:1859-66.

Cullen P, et al., Association of a familial Duane anomaly and urogenital abnormalities with a bisatellited marker derived from chromosome 22. Am J Med Genet. 1993;47:925-30.

Shauly Y, et al., Ocular and systemic characteristics of Duane syndrome. J Pediatr Ophthalmol Strabismus. 1993;30:178-83.


March of Dimes Birth Defects Foundation

1275 Mamaroneck Avenue

White Plains, NY 10605

Tel: (914)997-4488

Fax: (914)997-4763

Internet: http://www.marchofdimes.com

Schepens Eye Research Institute

20 Staniford Street

Boston, MA 02114-2500

Tel: (617)912-0100

Fax: (617)912-0101

Email: richard.godfrey@schepens.harvard.edu

Internet: http://www.theschepens.org/

NIH/National Eye Institute

31 Center Dr

MSC 2510

Bethesda, MD 20892-2510

United States

Tel: (301)496-5248

Fax: (301)402-1065

Email: 2020@nei.nih.gov

Internet: http://www.nei.nih.gov/

NIH/Office of Rare Disease Research

6701 Democracy Boulevard

Suite 1001, MSC 4874

Bethesda, MD 20892-7518

Tel: (301)402-4336

Fax: (301)480-9655

Email: ordr@od.nih.gov

Internet: http://rarediseases.info.nih.gov

Genetic and Rare Diseases (GARD) Information Center

PO Box 8126

Gaithersburg, MD 20898-8126

Tel: (301)251-4925

Fax: (301)251-4911

Tel: (888)205-2311

TDD: (888)205-3223

Internet: http://rarediseases.info.nih.gov/GARD/

Let Them Hear Foundation

1900 University Avenue, Suite 101

East Palo Alto, CA 94303

Tel: (650)462-3174

Fax: (650)462-3144

Email: info@letthemhear.org

Internet: http://www.letthemhear.org

Cleft Lip and Palate Foundation of Smiles

2044 Michael Ave SW

Wyoming, MI 49509

Tel: (616)329-1335

Email: Rachelmancuso09@comcast.net

Internet: http://www.cleftsmile.org

For a Complete Report

This is an abstract of a report from the National Organization for Rare Disorders, Inc.® (NORD). Cigna members can access the complete report by logging into myCigna.com. For non-Cigna members, a copy of the complete report can be obtained for a small fee by visiting the NORD website. The complete report contains additional information including symptoms, causes, affected population, related disorders, standard and investigational treatments (if available), and references from medical literature. For a full-text version of this topic, see http://www.rarediseases.org/search/rdblist.html.