Dyschondrosteosis

Dyschondrosteosis

National Organization for Rare Disorders, Inc.

Important

It is possible that the main title of the report Dyschondrosteosis is not the name you expected. Please check the synonyms listing to find the alternate name(s) and disorder subdivision(s) covered by this report.

Synonyms

  • Dwarfism, Deformity with Mesomelic
  • Leri-Weil Dyschondrosteosis
  • Leri-Weil Syndrome
  • Leri-Weill Disease
  • Mesomelic Dwarfism-Madelung Deformity

Disorder Subdivisions

  • None

General Discussion

Dyschondrosteosis is a very rare inherited disorder characterized by unusually shortened, bowed bones in the forearms (radius and ulna), abnormal deviation of the wrist toward the thumb side of the hand due to shortening of the radius and dislocation of the end portion of the ulna (Madelung deformity), unusually short lower legs, and associated short stature (mesomelic dwarfism). Affected individuals may also exhibit abnormalities of the large bone of the upper arm (humerus); abnormal bony growths projecting outward from the surface of the shin bones (exostoses of the tibia); unusually short, broad bones in the fingers and toes; and/or abnormalities of the hipbone (i.e., coxa valga). Dyschondrosteosis appears to affect females more severely than males. The disorder is inherited as an autosomal dominant or "pseudoautosomal" trait.

Symptoms

Individuals with dyschondrosteosis have abnormally short legs and associated mild short stature (mesomelic dwarfism). The degree of short stature varies from case to case.



Affected individuals also have an abnormality of the wrist known as Madelung deformity. In Madelung deformity, malformation (i.e., bowing and shortening) of the bones in the forearms (radius and ulna) and dislocation of the ulna results in abnormal deviation of the wrist toward the thumb side of the hand. In many cases, individuals with the disorder may have a limited range of movements of the wrists and elbows and/or may exhibit progressive degeneration, stiffness, tenderness, and pain of certain joints (osteoarthritis).



Additional symptoms found in individuals with dyschondrosteosis may include deformities of the large bone of the upper arm (humerus); an abnormal growths on the surface of the large bone in the middle of the lower leg (exostoses of the tibia); short, thick middle bones of the hand (metacarpals), fingers, and toes (phalanges); the forearm may be bent or twisted outward (cubitus valgus); a defect of the hip in which the thigh bone angles out to the side of the body (coxa valga); and/or a form of arthritis in which one or more of the large joints have tissue changes causing degeneration (osteoarthritis).

Causes

Dyschondrosteosis is inherited as an autosomal or pseudoautosomal dominant trait.



Human traits, including the classic genetic diseases, are the product of the interaction of a pair of matched genes, one received from the father and one from the mother. In dominant disorders, a single copy of the disease gene (received from either the mother or father) will be expressed "dominating" the other normal gene and resulting in the appearance of the disease. The risk of transmitting the disorder from affected parent to offspring is 50 percent for each pregnancy regardless of the sex of the resulting child.



Pseudoautosomal inheritance is an extremely rare occurrence that involves a gene from either the X or Y chromosome. Genes are found on chromosomes, which are found in the nucleus of all body cells. They carry the genetic characteristics of each individual. Pairs of human chromosomes are numbered from 1 through 22, with an unequal 23rd pair that normally consists of an X and Y chromosome for males and two X chromosomes for females. Chromosomes 1 through 22 are known as autosomes; the X and Y chromosomes are known as sex chromosomes.



A gene on an autosome may be passed on to either a male or female child with equal likelihood. This is referred to as autosomal inheritance. However, the sex chromosomes (X and Y) are not passed on equally because a father transmits his X chromosome to his daughters and his Y chromosome to his sons. This is referred to as sex-linked inheritance.



A key aspect of sex-linked inheritance is the lack of matched gene pairs between X and Y chromosomes. However, very small areas of the X and Y chromosome have matched genes. During the normal division of reproductive (sex) cells (meiosis), these areas pair up and "cross over". The genes located in these areas transmit in a fashion similar to genes found on autosomes (pseudoautosomal inheritance).



Investigators have determined that some cases of dyschondrosteosis may be caused by disruption or changes (mutations) of the short stature homeobox (SHOX) gene located on the short arm of the X or Y chromosome.

Affected Populations

Dyschondrosteosis is a very rare disorder that can affect males or females. There have been more cases of dyschondrosteosis reported in females than in males by a 4:1 ratio, but some scientists believe that this is because females tend to have more severe symptoms.

Standard Therapies

The treatment of dyschondrosteosis is symptomatic and supportive. Some individuals with dyschondrosteosis may have severe Madelung deformity of the wrist requiring orthopedic surgery to alleviate the pain and improve mobility.



Bone growth in individuals with dyschondrosteosis should be monitored regularly by a physician during the growth years. In severe cases, surgery may be chosen to equalize the length of the two legs.



Genetic counseling may be of benefit for affected individuals and their families.

Investigational Therapies

Information on current clinical trials is posted on the Internet at www.clinicaltrials.gov. All studies receiving U.S. government funding, and some supported by private industry, are posted on this government website.



For information about clinical trials being conducted at the National Institutes of Health (NIH) in Bethesda, MD, contact the NIH Patient Recruitment Office:



Tollfree: (800) 411-1222

TTY: (866) 411-1010

Email: prpl@cc.nih.gov



For information about clinical trials sponsored by private sources, contact:

www.centerwatch.com



Some children with dyschondrosteosis have been treated with growth hormone (GH) therapy. More research is necessary to determine the long-term safety and effectiveness of growth hormone therapy for individuals with dyschondrosteosis.

References

TEXTBOOKS

McKusick VA., ed. Online Mendelian Inheritance in Man (OMIM). Baltimore, MD:The Johns Hopkins University Press; Entry No: 127300; Created: 6/4/86; Updated: 5/16/02.



Thoene JG., ed. Physician's Guide to Rare Diseases. 2nd ed. Montvale, NJ: Dowden Publishing Company Inc; 1995:60-61.



Jones KL., ed. Smith's Recognizable Patterns of Human Malformation, 5th ed. Phildelphia, PA: W.B. Saunders Co; 1997:440-41.



Magalini SI, et al., eds. Dictionary of Medical Syndromes. 4th ed.New York, NY: Lippincott-Raven Publishers; 1997:485.



Buyse ML., ed. Birth Defects Encyclopedia. Dover, MA: Blackwell Scientific Publications; For: Center for Birth Defects Information Services, Inc; 1990:565-66.



REVIEW ARTICLES

Blaschke RJ, Rappold GA, SHOX: growth, Leri-Weill and Turner syndromes. Trends Endocrinol Metab. 2000;11:227-30.



Plafki C, et al. Bilateral Madelung's deformity without signs of dyschondrosteosis within five generations in a European family--case report and review of the literature. Arch Orthop Trauma Surg. 2000;120:114-17.



JOURNAL ARTICLES

Cormier-Daire M, et al. Allelic and nonallelic heterogeneity in dyschondrosteosis (Leri-Weill syndrome). Am J Med Genet. 2001;106:272-74.



Munns CP, et al. Histopathological analysis of Leri-Weill dyschondrosteosis: disordered growth plate. Hand Surg. 2001;6:13-23.



Schiller S, et al. Phenotypic variation and genetic heterogeneity in Leri-Weill syndrome. Eur J Hum Genet. 2000;8:54-62.



Calabrese G, et al., X/Y translocation in a family with Leri-Weill dyschondrosteosis. Hum Genet. 1999;105:367:68.



Stuppia L, et al., Loss of the SHOX gene associated with Leri-Weill dyschondrosteosis in a 45,X male. J Med Genet. 1999;36:711-13.



Shears DJ, et al., Mutation and deletion of the pseudoautosomal gene SHOX cause Leri-Weill dyschondrosteosis. Nat Genet. 1998;19:70-73.



Belin V, et al., SHOX mutations in dyschondrosteosis (Leri-Weill syndrome). Nat Genet. 1998;19:67-69.



Murphy MS, et al., Radial opening wedge osteotomy in Madelung's deformity. J Hand Surg [Am]. 1996;21:1035-44.



Burren CP, et al., Skeletal dysplasias: response to growth hormone therapy. J Pediatr Endocrinol Metab. 1996;9:31-40.



Thuestad IJ, et al., Growth hormone treatment in Leri-weill syndrome. J Pediatr Endocrinol Metab. 1996;9:201-04.

Resources

Human Growth Foundation

997 Glen Cove Avenue

Suite 5

Glen Head, NY 11545

Tel: (516)671-4041

Fax: (516)671-4055

Tel: (800)451-6434

Email: hgf1@hgfound.org

Internet: http://www.hgfound.org/



MAGIC Foundation

6645 W. North Avenue

Oak Park, IL 60302

Tel: (708)383-0808

Fax: (708)383-0899

Tel: (800)362-4423

Email: mary@magicfoundation.org

Internet: http://www.magicfoundation.org



Little People of America, Inc.

250 El Camino Real Suite 201

Tustin, CA 92780

Tel: (714)368-3689

Fax: (714)368-3367

Tel: (888)572-2001

Email: info@lpaonline.org

Internet: http://www.lpaonline.org/



Coalition for Heritable Disorders of Connective Tissue (CHDCT)

4301 Connecticut Avenue, NW Suite 404

Washington, DC 20008

Tel: (202)362-9599

Fax: (202)966-8553

Tel: (800)778-7171

Email: chdct@pxe.org

Internet: http://www.chdct2.org/



Genetic and Rare Diseases (GARD) Information Center

PO Box 8126

Gaithersburg, MD 20898-8126

Tel: (301)251-4925

Fax: (301)251-4911

Tel: (888)205-2311

TDD: (888)205-3223

Internet: http://rarediseases.info.nih.gov/GARD/



European Skeletal Dysplasia Network

Institute of Genetic Medicine

Newcastle University

International Centre for Life

Central Parkway

Newcastle upon Tyne, NE1 3BZ

United Kingdom

Tel: 441612755642

Fax: 441612755082

Email: info@esdn.org

Internet: http://www.esdn.org



For a Complete Report

This is an abstract of a report from the National Organization for Rare Disorders, Inc.® (NORD). Cigna members can access the complete report by logging into myCigna.com. For non-Cigna members, a copy of the complete report can be obtained for a small fee by visiting the NORD website. The complete report contains additional information including symptoms, causes, affected population, related disorders, standard and investigational treatments (if available), and references from medical literature. For a full-text version of this topic, see http://www.rarediseases.org/search/rdblist.html.

This information does not replace the advice of a doctor. Healthwise, Incorporated disclaims any warranty or liability for your use of this information. Your use of this information means that you agree to the Terms of Use . How this information was developed to help you make better health decisions.

Healthwise, Healthwise for every health decision, and the Healthwise logo are trademarks of Healthwise, Incorporated.