FG Syndrome Type 1

FG Syndrome Type 1

National Organization for Rare Disorders, Inc.

Important

It is possible that the main title of the report FG Syndrome Type 1 is not the name you expected. Please check the synonyms listing to find the alternate name(s) and disorder subdivision(s) covered by this report.

Synonyms

  • FGS1
  • Opitz-Kaveggia syndrome

Disorder Subdivisions

  • None

General Discussion

FG syndrome type 1 (FGS1) is an X-linked genetic disorder that is characterized by poor muscle tone (hypotonia), intellectual disability, constipation and or anal anomalies and complete or partial absence of the part of the brain that connects the two hemispheres of the brain (corpus callosum). Other features of the disorder are small and simple ears, tall and prominent forehead, wide and flat thumbs and great toes and downslanting eyes.



FGS1 is an X-linked genetic disorder caused by a recurrent abnormality (mutation) in the MED12 gene. The spectrum of disorders caused by mutations in this gene is still being defined. Some individuals previously diagnosed with FG syndrome do not have a MED12 gene mutation and, therefore, probably have a different reason for intellectual disability.

Symptoms

FG syndrome type 1 (FGS1) is an X-linked genetic disorder that is characterized by poor muscle tone (hypotonia), intellectual disability, constipation and or anal anomalies and complete or partial absence of the part of the brain that connects the two hemispheres of the brain (corpus callosum). Other features of the disorder are small and simple ears, tall and prominent forehead, wide and flat thumbs and great toes and downslanting eyes. Additional features may include a large head (macrocephaly), widely spaced eyes (ocular hypertelorism) and upswept frontal hair. Seizures and congenital heart defects have also been reported.



Individuals with FGS1 often have characteristic behaviors that can include hyperactivity, friendliness and attention seeking.

Causes

FGS1 is caused by a recurrent abnormality (mutation) in the MED12 gene on the X chromosome located at Xq13. The MED12 gene is responsible for production of the MED12 (TRAP230) protein that is involved in the regulation of transcription.



FGS1 is an X-linked genetic disorder. X-linked genetic disorders are conditions caused by an abnormal gene on the X chromosome and occur mostly in males. Females that have a disease gene present on one of their X chromosomes are carriers for that disorder. Carrier females usually do not display symptoms because females have two X chromosomes and one is inactivated so that the genes on that chromosome are nonfunctioning. It is usually the X chromosome with the abnormal gene that is inactivated. Males have one X chromosome that is inherited from their mother and if a male inherits an X chromosome that contains a disease gene he will develop the disease. Female carriers of an X-linked disorder have a 25% chance with each pregnancy to have a carrier daughter like themselves, a 25% chance to have a non-carrier daughter, a 25% chance to have a son affected with the disease and a 25% chance to have an unaffected son.



Males with X-linked disorders pass the disease gene to all of their daughters who will be carriers. A male cannot pass an X-linked gene to his sons because males always pass their Y chromosome instead of their X chromosome to male offspring.

Affected Populations

The prevalence of FGS1 is unknown. The spectrum of disorders caused by mutations in this gene is still being defined. Some individuals previously diagnosed with FG syndrome do not have a MED12 gene mutation and, therefore, probably have a different reason for intellectual disability.

Standard Therapies

Diagnosis

FGS1 syndrome is suspected based on the presence of physical characteristics. Molecular genetic testing for the MED12 gene is available and is the only way to confirm the diagnosis.



Treatment

The symptoms of FGS1 syndrome are treated individually. This usually involves care by a team of providers including a pediatrician, neurologist, cardiologist, surgeon, gastroenterologist and psychologist. Early intervention with physical, occupational and speech therapy should be initiated as soon as possible.



Genetic counseling is recommended for affected individuals and their family members.

Investigational Therapies

Information on current clinical trials is posted on the Internet at www.clinicaltrials.gov. All studies receiving U.S. government funding, and some supported by private industry, are posted on this government web site.



For information about clinical trials being conducted at the National Institutes of Health (NIH) in Bethesda, MD, contact the NIH Patient Recruitment Office:



Tollfree: (800) 411-1222

TTY: (866) 411-1010

Email: prpl@cc.nih.gov



For information about clinical trials sponsored by private sources, contact:

www.centerwatch.com



Information on current clinical trials is posted on the Internet at www.clinicaltrials.gov. All studies receiving U.S. government funding, and some supported by private industry, are posted on this government web site.



For information about clinical trials being conducted at the NIH Clinical Center in Bethesda, MD, contact the NIH Patient Recruitment Office:



Tollfree: (800) 411-1222

TTY: (866) 411-1010

Email: prpl@cc.nih.gov



For information about clinical trials sponsored by private sources, contact:

www.centerwatch.com

References

TEXTBOOKS

Graham JM Jr. FG Syndrome In: The NORD Guide to Rare Disorders, Philadelphia: Lippincott, Williams and Wilkins, 2003:193-4.



JOURNAL ARTICLES

Clark RD, Graham JM Jr, et al. FG syndrome, an X-linked multiple congenital anomaly syndrome: The clinical phenotype and an algorithm for diagnostic testing. Genet Med. 2009 Nov;11(11):769-77.



Risheg H, Graham JM, Clark RD, et al. A recurrent mutation in MED12 leading to R961W causes Opitz-Kaveggia syndrome. Nat Genet 2007;39:451-3.



Schwartz CE, Tarpay PS, Lubs HA, et al. The original Lujan syndrome family has a novel missense mutation (p.N1007S) in the MED12 gene. J Med Genet A 2007;44:472-7.

Battaglia A, Chines C and Carey JC. The FG syndrome:Report of a large Italian series. Am J Med Genet 2006;140A:2075-9.



Jehee, FS, Rosenberg C, Krepischi-Santos, AC, et al. An Xq22.3 duplication detected by comparative genomic hybridization microarray (Array-CGH) defines in a new locus (FGS5) for FG syndrome. Am J Med Genet 2005;139A:221-6.



Piluso G, Carella M, D'Avanzo M, et al. Genetic heterogeneity of FG syndrome: a fourth locus (FGS4) maps to Xp11.4-p11.3 in an Italian family. Hum Genet 2003;112(2):124-30.



Ozonoff S, Williams BJ, Rauch AM, et al. Behavioral phenotype of FG syndrome: cognition, personality and behavior in eleven boys. Am J Med Genet 2000;97:112-118.



Meroni G, Cainarca S, Berti C, et al. Identification and characterization of proteins that interact with midin, the Opitz syndrome gene product. Am Soc Hum Genet Program and Abstract 2000;abstract 959: p. 183.



Graham JM Jr, Superneau D, Rogers RC, et al. Clinical and behavioral characteristics in FG syndrome. Am J Med Genet 1999;85:470-475.



Opitz JM, Richieri-da Costa A, Aase JM, et al. FG syndrome update 1998: note of 5 new patients and bibliography. Am J Med Genet 1998;30:309-328.



Graham JM Jr, Tackels, D, Dibbern K, et al. FG syndrome: report of three new families with linkage to Xq12-q21.1 Am J Med Genet 1998;80:145-156.Briault S, Hill R, Shrimpton A, et al. A gene for FG syndrome maps in the Xq12-X21.31 region. Am J Med Genet 1997;73:87-90.



Briault S, Hill R, Shrimpton A, et al. A gene for FG syndrome maps in the Xq12-X21.31 region. Am J Med Genet 1997;73:87-90.



Kato R, Niikawa N, Nagai T, et al. Japanese kindred with FG syndrome [letter]. Am J Med Genet 1994;52:242-243.



FROM THE INTERNET

Lyons MJ.. MED12-Related Disorders. Last update: July 14, 2009. In: GeneReviews at GeneTests: Medical Genetics Information Resource (database online). Available at http://www.genetests.org . Accessed12/11.



Opitz JM. FG Syndrome. Orphanet Encyclopedia; Last updated 7/03. http://www.orpha.net/data/patho/Pro/en/FGSyndrome-FRenPro1053.pdf



McKusick VA, ed. Online Mendelian Inheritance in Man (OMIM). Baltimore, MD: The Johns Hopkins University; Entry No. 305450; Last Update1/7/10. http://omim.org/entry/305450

Resources

FG Syndrome Family Alliance

922 NW Circle Blvd

Suite 160 PMB 290

Corvallis, OR 97330

Tel: (617)577-9050

Email: info@fg-syndrome.org

Internet: http://www.fg-syndrome.org



Genetic and Rare Diseases (GARD) Information Center

PO Box 8126

Gaithersburg, MD 20898-8126

Tel: (301)251-4925

Fax: (301)251-4911

Tel: (888)205-2311

TDD: (888)205-3223

Internet: http://rarediseases.info.nih.gov/GARD/



Madisons Foundation

PO Box 241956

Los Angeles, CA 90024

Tel: (310)264-0826

Fax: (310)264-4766

Email: getinfo@madisonsfoundation.org

Internet: http://www.madisonsfoundation.org



For a Complete Report

This is an abstract of a report from the National Organization for Rare Disorders, Inc.® (NORD). Cigna members can access the complete report by logging into myCigna.com. For non-Cigna members, a copy of the complete report can be obtained for a small fee by visiting the NORD website. The complete report contains additional information including symptoms, causes, affected population, related disorders, standard and investigational treatments (if available), and references from medical literature. For a full-text version of this topic, see http://www.rarediseases.org/search/rdblist.html.

This information does not replace the advice of a doctor. Healthwise, Incorporated disclaims any warranty or liability for your use of this information. Your use of this information means that you agree to the Terms of Use . How this information was developed to help you make better health decisions.

Healthwise, Healthwise for every health decision, and the Healthwise logo are trademarks of Healthwise, Incorporated.