Fukuyama Type Congenital Muscular Dystrophy

National Organization for Rare Disorders, Inc.

Skip to the navigation


It is possible that the main title of the report Fukuyama Type Congenital Muscular Dystrophy is not the name you expected. Please check the synonyms listing to find the alternate name(s) and disorder subdivision(s) covered by this report.


  • cerebromuscular dystrophy, Fukuyama type
  • congenital muscular dystrophy, Fukuyama type
  • FCMD
  • micropolygyria with muscular dystrophy
  • muscular dystrophy, congenital, Fukuyama type
  • muscular dystrophy, congenital progressive with mental retardation
  • muscular dystrophy, congenital with central nervous system involvement
  • muscular dystrophy, fukuyama type

Disorder Subdivisions

  • None

General Discussion

Fukuyama type congenital muscular dystrophy (FCMD) is one of several forms of a rare type of muscular dystrophy known as congenital muscular dystrophy. It is inherited as an autosomal recessive trait. Symptoms of this disorder are apparent at birth and progress slowly. In addition to general muscle weakness and deformities of the joints (contractures), FCMD is often accompanied by seizures, mental retardation and speech problems. This disorder is predominantly found in Japan.


Infants with Fukuyama congenital muscular dystrophy are "floppy" at birth and usually have problems sucking and swallowing. They have a weak cry and there is a loss of muscle tone as well as weakness of the muscles. The joints in the knees and elbows may be in a fixed position (contractures) and reflexes of the tendons are poor.

Mental retardation is characteristic of this form of muscular dystrophy. Also, some affected infants and children have seizures. A sunken chest, and a severe form of grand mal seizures called status epilepticus has been found in a few individuals with FCMD.


Fukuyama congenital muscular dystrophy is inherited as an autosomal recessive trait. It occurs as a result of a gene mutation on the long arm of chromosome 9 (9q31). This gene gives instructions for the production of (codes for) a protein known as fukutin. The normal role of this protein isn't yet well understood.

Chromosomes, which are present in the nucleus of human cells, carry the genetic information for each individual. Human body cells normally have 46 chromosomes. Pairs of human chromosomes are numbered from 1 through 22 and the sex chromosomes are designated X and Y. Males have one X and one Y chromosome and females have two X chromosomes. Each chromosome has a short arm designated "p" and a long arm designated "q". Chromosomes are further sub-divided into many bands that are numbered. For example, "chromosome 9q31" refers to band 31 on the long arm (q) arm of chromosome 9. The numbered bands specify the location of the thousands of genes that are present on each chromosome.

Genetic diseases are determined by the combination of genes for a particular trait that are on the chromosomes received from the father and the mother.

Recessive genetic disorders occur when an individual inherits the same abnormal gene for the same trait from each parent. If an individual receives one normal gene and one gene for the disease, the person will be a carrier for the disease, but usually will not show symptoms. The risk for two carrier parents to both pass the defective gene and, therefore, have an affected child is 25% with each pregnancy. The risk to have a child who is a carrier like the parents is 50% with each pregnancy. The chance for a child to receive normal genes from both parents and be genetically normal for that particular trait is 25%. The risk is the same for males and females.

All individuals carry 4-5 abnormal genes. Parents who are close relatives (consanguineous) have a higher chance than unrelated parents to both carry the same abnormal gene, which increases the risk to have children with a recessive genetic disorder.

Dominant genetic disorders occur when only a single copy of an abnormal gene is necessary for the appearance of the disease. The abnormal gene can be inherited from either parent, or can be the result of a new mutation (gene change) in the affected individual. The risk of passing the abnormal gene from affected parent to offspring is 50% for each pregnancy regardless of the sex of the resulting child.

Affected Populations

Fukuyama type congenital muscular dystrophy is almost nonexistent in the United States, but in Japan is second only to Duchenne muscular dystrophy in frequency. The incidence in Japan is reported as about 0.7-1.2 cases per 100,000 children.

Standard Therapies


The diagnosis depends on a thorough physical examination and medical history. In addition, the physician will look for information to assist in the diagnosis from several tests such as blood tests to detect abnormally high levels of a particular enzyme (creatine kinase) released form the cells of damaged muscles, electromyographic studies to determine the area of muscle that is damaged, and muscle biopsy to distinguish muscular dystrophy from other neuromuscular disorders.


Patients with Fukuyama congenital muscular dystrophy may benefit from physical therapy to help prevent joints from becoming fixed.

For patients who have seizures, anti-convulsant drugs such as phenytoin, valproic acid, phenobarbitol, clonazepam, ethusuximide, primidone, corticotropin, and corticosteroid drugs may help prevent and control seizures.

Genetic counseling will be of benefit for patients and their families.

Investigational Therapies

Information on current clinical trials is posted on the Internet at www.clinicaltrials.gov. All studies receiving U.S. government funding, and some supported by private industry, are posted on this government web site.

For information about clinical trials being conducted at the NIH Clinical Center in Bethesda, MD, contact the NIH Patient Recruitment Office:

Tollfree: (800) 411-1222

TTY: (866) 411-1010

Email: prpl@cc.nih.gov

For information about clinical trials sponsored by private sources, contact:


Contact for additional information about Fukuyama type congenital muscular dystrophy:

Chang-Yong Tsao, MD, FAAN, FAAP

Professor of Clinical Pediatrics and Neurology

College of Medicine and Public Health

Ohio State University

Columbus, Ohio 43210





Rowland LP, ed. Merritt's Neurology. 10th ed. Lippincott Williams & Wilkins. Philadelphia, PA. 2000:746.

Adams RD, Victor M, Ropper AA, eds. Principles of Neurology. 6th ed. McGraw-Hill Companies. New York, NY; 1997:1427.

Menkes JH, Pine Jr JW, et al., eds. Textbook of Child Neurology. 5th ed. Williams & Wilkins. Baltimore, MD; 1995:832, 843.


Grewal PK, Hewitt JE. Glycosylation defects: a new mechanism for muscular dystrophy? Hum Mol Genet. 2003;12 Spec No 2:R259-64.

Toda T, Kobayashi K, Takeda S, et al. Fukuyama-type congenital muscular dystrophy (FCMD) and alpha-dystroglycanopathy. Congenit Anom. (Kyoto). 2003;97-104.

Martin-Rendon E, Blake DJ. Protein glycosylation in disease: new insights into the congenital muscular dystrophies. Trends Pharmacol Sci. 2003;24:178-83.


Yamamoto T, Kato Y, Karita M, et al. Expression of genes related to muscular dystrophy with lissencephaly. Pediatr Neurol. 2004;31:183-90.

Kato R, Kawamura J, Sugawara H, et al. A rapid diagnostic method or a retrotransposal insertional mutation into the FCMD gene in Japanese patients with Fukuyama congenital muscular dystrophy. Am J Med Genet A. 2004;127:54-57.

Takeda S, Kondo M, Sasaki J, et al. Fukutin is required for maintenance of muscle integrity, cortical histiogenesis and normal eye development. Hum Mol Genet. 2003;12:1449-59.

Saito Y, Kobayashi M, Itoh M, et al. Aberrant neuronal migration in the brainstem of Fukuyama-type congenital muscular dystrophy. J Neuropathol Exp Neurol. 2003;62:497-508.

Taniguchi K, Kobayashi K, Saito K, et al. Worldwide distribution and broader clinical spectrum of muscle-eye-brain disease. Hum Mol Genet. 2003;12:527-34.


Mayo Clinic staff. Muscular dystrophy. www.mayoclinic.com/invoke.cfm?id=DS00200. Updated January 18, 2012. Accessed February 21, 2012.

Lopate G. Congenital Muscular Dystrophy. Emedicine. http://emedicine.medscape.com/article/1180214-overview Updated August 17, 2011. Accessed February 21, 2012.

Facts About Rare Muscular Dystrophies. MDA Publications.

www.mdausa.org/publications/fa-rareMD.html. Updated December 2009. Accessed February 21, 2012.


Muscular Dystrophy Association

3300 East Sunrise Drive

Tucson, AZ 85718-3208


Tel: (520)529-2000

Fax: (520)529-5300

Tel: (800)572-1717

Email: mda@mdausa.org

Internet: http://www.mda.org/

Muscular Dystrophy Campaign

61 Southwark Street

London, SE1 0HL

United Kingdom

Tel: 02078034800

Email: info@muscular-dystrophy.org

Internet: http://www.muscular-dystrophy.org

Ledbetter, David, M.D.

NIH/Center for Genome Research

9000 Rockville Pike

Center for Medical Genetics, Room L038

5841 South Maryland Ave

Bethesda, MD 20892

Tel: (312)834-0555

Fax: (312)834-0556

Email: dhl@babies.bsd.uchicago.edu

NIH/National Institute of Neurological Disorders and Stroke

P.O. Box 5801

Bethesda, MD 20824

Tel: (301)496-5751

Fax: (301)402-2186

Tel: (800)352-9424

TDD: (301)468-5981

Internet: http://www.ninds.nih.gov/

Society for Muscular Dystrophy Information International

P.O. Box 7490


Nova Scotia, B4V 2X6


Tel: 9026853961

Fax: 9026853962

Email: smdi@auracom.com

Internet: http://www.nsnet.org/smdi/

New Horizons Un-Limited, Inc.

811 East Wisconsin Ave

P.O. Box 510034

Milwaukee, WI 53203


Tel: (414)299-0124

Fax: (414)347-1977

Email: horizons@new-horizons.org

Internet: http://www.new-horizons.org

Genetic and Rare Diseases (GARD) Information Center

PO Box 8126

Gaithersburg, MD 20898-8126

Tel: (301)251-4925

Fax: (301)251-4911

Tel: (888)205-2311

TDD: (888)205-3223

Internet: http://rarediseases.info.nih.gov/GARD/

Cure CMD (Congenital Muscular Dystrophy)

P.O. Box 701

Olathe, KS 66051


Tel: (866)400-3626

Email: info@curecmd.com

Internet: http://www.curecmd.org

For a Complete Report

This is an abstract of a report from the National Organization for Rare Disorders, Inc.® (NORD). Cigna members can access the complete report by logging into myCigna.com. For non-Cigna members, a copy of the complete report can be obtained for a small fee by visiting the NORD website. The complete report contains additional information including symptoms, causes, affected population, related disorders, standard and investigational treatments (if available), and references from medical literature. For a full-text version of this topic, see http://www.rarediseases.org/search/rdblist.html.