Roberts Syndrome

Roberts Syndrome

National Organization for Rare Disorders, Inc.

Important

It is possible that the main title of the report Roberts Syndrome is not the name you expected. Please check the synonyms listing to find the alternate name(s) and disorder subdivision(s) covered by this report.

Synonyms

  • Hypomelia-Hypotrichosis-Facial Hemangioma Syndrome
  • Pseudothalidomide Syndrome
  • SC Syndrome

Disorder Subdivisions

  • Phocomelia

General Discussion

Roberts syndrome is a rare genetic disorder characterized by growth delays before and after birth (pre- and postnatal growth deficiency); malformations of the arms and legs (limbs); distinctive abnormalities of the skull and facial (craniofacial) region. Mental retardation occurs in some cases; normal intelligence has also been reported.



In infants with Roberts syndrome, the arms and legs may be incompletely developed (limb reduction abnormalities), however, such limb defects are usually symmetrical which are distinct from the asymmetrical limb defects in CdLS. Such abnormalities may range from absence of all four limbs (tetraphocomelia) to less severe degrees of limb reduction, such as underdevelopment and/or absence of certain bones of the upper arms (humeri), forearms (radii and/or ulnae), thighs (femurs), shins (tibiae), and/or on the outside of the lower legs (fibulae). Characteristic craniofacial abnormalities may include an unusually small, broad head (microbrachycephaly); abnormal grooves on either side of the upper lip (bilateral cleft lip); incomplete development of the roof of the mouth (cleft palate); thin, small wings of the nose (hypoplastic nasal alae); and/or low-set, malformed (dysplastic) ears. Additional abnormalities are often present. Roberts syndrome is probably genetically heterogeneous. While it is inherited as an autosomal recessive trait in most families, the possibility of new mutation in an autosomal dominant gene cannot be excluded.

Initially, researchers believed that Roberts syndrome and SC phocomelia syndrome were separate disorders. However, researchers now believe that the two disorders are different expressions of one distinct disorder because different changes in the same gene are the underlying cause for both conditions.

Symptoms

The symptoms associated with Roberts syndrome vary widely from case to case even among members of the same family. Most infants experience growth deficiencies and have abnormalities of the limbs and craniofacial region. Infants with Roberts syndrome often experience life-threatening complications early in infancy.



Affected infants may experience growth deficiencies before and after birth (pre- and postnatally). Mental retardation is a variable finding that occurs in approximately 50 percent of cases.



Limb abnormalities are common in infants with Roberts syndrome and may range from underdeveloped bones in the arms and legs (hypomelia) to complete absence of all four limbs (tetraphocomelia). The arms are usually more severely affected than the legs.



Additional abnormalities may affect the arms and legs including permanent fixation (contracture) of various joints, especially the knees and elbows. The number of fingers and/or toes may be reduced and the fifth fingers may be in a fixed laterally deviated position (clinodactyly). Webbing of the finger and toes (syndactyly) may also be present. Infants with Roberts syndrome may also have a form of club foot where the heel of the foot may be elevated and turned outward away from the body (talipes equinovalgus).



Infants with Roberts Syndrome also have a variety of craniofacial abnormalities including a small, broad head (microbrachycephaly); an abnormal groove in the upper lip (cleft lip) with or without incomplete closure of the roof of the mouth (cleft palate); a flattened nose with small wings; an abnormally small jaw (micrognathia); sparse, silvery hair; and malformed, low-set ears that often lack lobes. Some infants may experience premature fusion of the fibrous joints (cranial sutures) between certain bones in the skull (craniosynostosis). Affected infants may have eye (ocular) abnormalities including widely spaced eyes (hypertelorism); unusually small eyes (microphthalmia); cloudy corneas; and bulging or prominent eyes (proptosis) due to shallow eye cavities (orbits). In some cases, the whites of the eyes may be blue (blue sclera) and increased pressure within the eyeball (glaucoma) may also be present.



Some infants with Roberts syndrome may have one or more pink or dark red irregularly shaped patches of skin (hemangiomas) on the face caused by dense collections of small blood vessels (capillaries).



Infants with Roberts syndrome often have abnormalities affecting the genitourinary system. Males may have the urinary opening located on the underside of the penis (hypospadias) and the testicles may fail to descend into the scrotum (cryptorchidism). Females may have a malformed uterus with horn-like branches (bicornuate uterus).



Less common symptoms associated with Roberts syndrome include malformed kidneys, an abnormal increase in cerebrospinal fluid resulting in enlargement of the skull (hydrocephalus), paralysis of cranial nerves, seizures, heart defects and a decreased number of blood platelets (thrombocytopenia).

Causes

Roberts syndrome is inherited as an autosomal recessive disorder. Genetic diseases of this type are determined by two abnormal genes, one received from the father and one from the mother.



Recessive genetic disorders occur when an individual inherits an abnormal version of the same gene from each parent. If an individual receives one normal gene and one gene for the disease, the person will be a carrier for the disease, but usually will not show symptoms. The risk for two carrier parents to both pass the defective gene and, therefore, have an affected child is 25% with each pregnancy. The risk to have a child who is a carrier like the parents is 50% with each pregnancy. The chance for a child to receive normal genes from both parents and be genetically normal for that particular trait is 25%.



Some cases of Roberts syndrome have had parents who were related by blood (consanguineous). All individuals carry a few abnormal genes. Parents who are close relatives (consanguineous) have a higher chance than unrelated parents to both carry the same abnormal gene, which increases the risk to have children with a recessive genetic disorder.



Investigators have determined that Roberts syndrome is caused by disruptions or changes of the ESCO2 (establishment of cohesion 1 homolog 2) gene located on the short arm (p) of chromosome 8 (8p21.1). Chromosomes, which are present in the nucleus of human cells, carry the genetic information for each individual. Pairs of human chromosomes are numbered from 1 through 22, and an additional 23rd pair of sex chromosomes, which include one X and one Y chromosome in males and two X chromosomes in females. Each chromosome has a short arm designated "p" and a long arm designated "q". Chromosomes are further subdivided into many regions, bands and sub-bands that are numbered. For example, "chromosome 8p21.1" refers to region 2, band 1, sub-band 1 on the short arm of chromosome 8. The numbered bands specify the location of the thousands of genes that are present on each chromosome.



Certain complex chromosomal abnormalities are distinguishing features of Roberts syndrome. Most affected individuals experience premature centromere separation of various chromosomes, especially chromosomes 1, 9, and 16, a phenomenon often referred to as "puffing." The centromere is the center of a chromosome located between the long and short arms of a chromosome. The characteristic "puffing" abnormality is apparent in mitosis, the process in which a cell divides ultimately forming two cells identical to the original.

Affected Populations

Roberts syndrome affects males and females in equal numbers. The incidence of Roberts syndrome is unknown.

Standard Therapies

Diagnosis

A diagnosis of Roberts syndrome is suspected based upon a thorough clinical evaluation, detailed patient history and identification of characteristic abnormalities. A diagnosis may be confirmed by chromosomal analysis that detects characteristic premature centromere separation (puffing) on various chromosomes. Absence of puffing does not exclude the diagnosis, as it was reported to be absent in some clinically diagnosed cases.



In some cases, it is possible that a diagnosis of Roberts syndrome may be suspected before birth (prenatally) based upon specialized tests, such as amniocentesis, chorionic villus sampling (CVS), or ultrasonography. During amniocentesis, a sample of fluid that surrounds the developing fetus is removed and analyzed, while CVS involves the removal of tissue samples from a portion of the placenta. Chromosomal studies performed on such fluid or tissue samples may reveal premature centromere separation (puffing) in miotic cells. During fetal ultrasonography, reflected sound waves create an image of the developing fetus, potentially revealing certain developmental abnormalities suggestive Roberts syndrome (e.g., limb abnormalities).

The diagnosis of RBS is confirmed by molecular testing for ESCO2 mutations. The presence of mutations in this gene is strictly correlated with the centromere puffing phenomenon.



Treatment

The treatment of Roberts syndrome is directed toward the specific symptoms that are apparent in each individual. Treatment may require the coordinated efforts of a team of specialists. Pediatricians, surgeons, cardiologists, neurologists, eye specialists, and other health care professionals may need to systematically and comprehensively plan an affected child's treatment.



Individuals with Roberts Syndrome may benefit from surgery for facial and limb defects. Prosthetic devices can also reduce problems associated with missing limbs.



Genetic counseling may be of benefit for affected individuals and their families. Other treatment is symptomatic and supportive.

Investigational Therapies

Information on current clinical trials is posted on the Internet at www.clinicaltrials.gov. All studies receiving U.S. Government funding, and some supported by private industry, are posted on this government web site.



For information about clinical trials being conducted at the NIH Clinical Center in Bethesda, MD, contact the NIH Patient Recruitment Office:



Tollfree: (800) 411-1222

TTY: (866) 411-1010

Email: prpl@cc.nih.gov



For information about clinical trials sponsored by private sources, contact:

www.centerwatch.com

References

TEXTBOOKS

Gordillo M, Vega H, Jabs EW. ESCO2 and Roberts syndrome. In: Epstein CJ, Erickson RP, Wynshaw-Boris A, eds. Inborn Errors of Development. 2 ed, Chap 111. New York: Oxford University Press; 2008:1011-9.



Mandal AK. Roberts Pseudothalidomide Syndrome. In: NORD Guide to Rare Disorders. Lippincott Williams & Wilkins. Philadelphia, PA. 2003:244-5.



Buyse ML., ed. Birth Defects Encyclopedia. Dover, MA: Blackwell Scientific Publications; For: The Center for Birth Defects Information Services Inc; 1990.



Jones KL., ed. Smith's Recognizable Patterns of Human Malformation. 5th ed. Philadelphia, PA: W. B. Saunders Co: 1997:298.



Gorlin RJ, et al., eds. Syndromes of the Head and Neck, 3rd ed. New York, NY: Oxford University Press; 1990:735-8.



JOURNAL ARTICLES

Vega H, Trainer AH, Gordillo M, et al. Phenotypic variability in 49 cases of ESCO2 mutations, including novel missense and codon deletion in the acetyltransferase domain, correlates with ESCO2 expression and establishes the clinical criteria for Roberts syndrome. J Med Genet. 2010;1:30-7.



Schule B, Oviedo A, Johnston K, Pai S, Francke U. Inactivating mutations in ESCO2 cause SC Phocomelia and Roberts syndrome: no phenotype-genotype correlation. Am J Med Genet. 2005;117-28.



Krantz ID, McCallum J, DeScipio C, Kaur M, Gillis LA, Yaeger D, Jukofsky L, Wasserman N, Bottani A, Morris CA, Nowaczyk MJ, Toriello H, Bamshad MJ, Carey JC, Rappaport E, Kawauchi S, Lander AD, Calof AL, Li HH, Devoto M, Jackson LG. Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B. Nat Genet. 2004 Jun;36(6):631-5.



Hwang K, et al. Roberts syndrome, normal cell division, and normal intelligence. J Craniofacial Surg. 2002;13:390-4.



Maheshwari A, et al. Roberts-SC phocomelia syndrome. Indian J Pediatr. 2001;68:557-9.



McDaniel LD, et al. Novel assay for Roberts syndrome assigns variable phenotypes to one complementation group. Am J Med Genet. 2000;93:223-9.



Camlibel T, et al. Roberts SC phocomelia with isolated cleft palate, thrombocytopenia, and eosinophilia. Genet Couns. 1999;10:157-61.



Petrikovsky BM, et al. Prenatal diagnosis of pseudothalidomide syndrome in consecutive pregnancies of a consanguineous couple. Ultrasound Obstet Gynecol. 1997;10:425-8.



Concolino D, et al. A mild form of Roberts/SC phocomelia syndrome with asymmetrical reduction of upper limbs. Clin Genet. 1996;49:274-6.



Van den Berg DJ, Francke U. Roberts syndrome: a review of 100 cases and a new rating system for severity. Am J Med Genet. 1993;15:1104-23.



Van den Berg DJ, Francke U. Sensitivity of Roberts syndrome cells to gamma radiation, mitomycin C, and protein synthesis inhibitors. Somat Cell Mol Genet. 1993;19:377-92.



Holden KR, Jabs EW, Sponseller PD. Roberts/pseudothalidomide syndrome and normal intelligence: approaches to diagnosis and management. Dev Med Child Neurol. 1992;34:534-9.



Sherer DM, et al. Prenatal sonographic features and management of a fetus with Roberts-SC phocomelia syndrome (pseudothalidomide syndrome) and pulmonary hypoplasia. Am J Perinatol. 1991;8:259-62.



Keppen LD, et al. Roberts syndrome with normal cell division. Am J Med Genet. 1991;38:21-4.



Romke C, et al. Roberts syndrome and SC phocomelia. A single genetic entity. Clin Genet. 1987;31:170-7.



INTERNET

McKusick VA, ed. Online Mendelian Inheritance in Man (OMIM). Baltimore. MD: The Johns Hopkins University; Entry No:268300; Last Update:1/10/12. Available at: http://omim.org/entry/268300 Accessed on: January 12, 2012.



McKusick VA, ed. Online Mendelian Inheritance in Man (OMIM). Baltimore. MD: The Johns Hopkins University; Entry No:269000; Last Update:4/16/2004. Available at: http://omim.org/entry/269000 Accessed on: January 12, 2012.



Gordillo, M, Vega H, and Jabs EW (Updated 4/14/09). Roberts Syndrome. In GeneReviews at Genetests: Medical Genetics Information Resource (database online). Copyright, University of Washington, Seattle. 1997-2012. Available at http://www.genetests.org Accessed: January 12, 2012.

Resources

Children's Craniofacial Association

13140 Coit Road

Suite 517

Dallas, TX 75240

USA

Tel: (214)570-9099

Fax: (214)570-8811

Tel: (800)535-3643

Email: contactCCA@ccakids.com

Internet: http://www.ccakids.com



March of Dimes Birth Defects Foundation

1275 Mamaroneck Avenue

White Plains, NY 10605

Tel: (914)997-4488

Fax: (914)997-4763

Tel: (888)663-4637

Email: Askus@marchofdimes.com

Internet: http://www.marchofdimes.com



FACES: The National Craniofacial Association

PO Box 11082

Chattanooga, TN 37401

Tel: (423)266-1632

Fax: (423)267-3124

Tel: (800)332-2373

Email: faces@faces-cranio.org

Internet: http://www.faces-cranio.org



AmeriFace

P.O. Box 751112

Limekiln, PA 19535

USA

Tel: (702)769-9264

Fax: (702)341-5351

Tel: (888)486-1209

Email: info@ameriface.org

Internet: http://www.ameriface.org



Reach

P.O. Box 54

Helston

Cornwall, TR13 8WD

United Kingdom

Tel: 08451306225

Fax: 08451300262

Email: reach@reach.org.uk

Internet: http://www.reach.org.uk



NIH/National Institute of Child Health and Human Development

31 Center Dr

Building 31, Room 2A32

MSC2425

Bethesda, MD 20892

Fax: (866)760-5947

Tel: (800)370-2943

TDD: (888)320-6942

Email: NICHDInformationResourceCenter@mail.nih.gov

Internet: http://www.nichd.nih.gov/



Genetic and Rare Diseases (GARD) Information Center

PO Box 8126

Gaithersburg, MD 20898-8126

Tel: (301)251-4925

Fax: (301)251-4911

Tel: (888)205-2311

TDD: (888)205-3223

Internet: http://rarediseases.info.nih.gov/GARD/



For a Complete Report

This is an abstract of a report from the National Organization for Rare Disorders, Inc.® (NORD). Cigna members can access the complete report by logging into myCigna.com. For non-Cigna members, a copy of the complete report can be obtained for a small fee by visiting the NORD website. The complete report contains additional information including symptoms, causes, affected population, related disorders, standard and investigational treatments (if available), and references from medical literature. For a full-text version of this topic, see http://www.rarediseases.org/search/rdblist.html.

This information does not replace the advice of a doctor. Healthwise, Incorporated disclaims any warranty or liability for your use of this information. Your use of this information means that you agree to the Terms of Use . How this information was developed to help you make better health decisions.

Healthwise, Healthwise for every health decision, and the Healthwise logo are trademarks of Healthwise, Incorporated.