Rothmund-Thomson Syndrome

National Organization for Rare Disorders, Inc.

Skip to the navigation


It is possible that the main title of the report Rothmund-Thomson Syndrome is not the name you expected. Please check the synonyms listing to find the alternate name(s) and disorder subdivision(s) covered by this report.


  • poikiloderma atrophicans and cataract
  • poikiloderma congenitale
  • RTS

Disorder Subdivisions

  • None

General Discussion

Rothmund-Thomson syndrome (RTS) is a rare genetic disorder that can affect many parts of the body. The disorder is characterized by distinctive abnormalities of the skin, sparse hair, eyelashes and/or eyebrows, small stature, skeletal and dental abnormalities, and an increased risk of cancer, especially bone cancer (osteosarcoma). Patients typically begin having signs of RTS during infancy, and the first feature to appear is a rash that starts on the cheeks and later spreads to other parts of the body. The rash gradually becomes chronic and persists for life. Other features may appear that involve other areas of the body such as the eyes, bones, teeth, and hair, and patients may often be small in size compared to their peers. Patients are at an increased risk for developing cancer, particularly certain types of skin and bone cancer. Lifespan is generally felt to be normal in the absence of death due to cancer, although follow-up data in the published literature are limited. RTS is inherited as an autosomal recessive genetic condition. The gene defect in two-thirds of cases is due to mutations in a gene called RECQL4. For the other one-third of patients, the gene(s) involved has not yet been identified.


Rothmund-Thomson syndrome is a rare genetic disorder that manifests in early infancy. The range and severity of symptoms may vary from case to case. RTS is typically characterized by skin rash, sparse hair, malformed bones, abnormal clouding of the lenses of the eyes (juvenile cataracts), small stature, and other physical abnormalities. Intelligence is usually normal, but some affected individuals have been reported to have mental retardation.

Skin and hair findings:

Between the ages of approximately three to six months, infants with RTS typically develop redness (erythema) on the cheeks that may appear as patches or inflamed plaques and may resemble sunburn or even eczema. The redness may be accompanied by swelling (edema). In a few cases, the rash may be apparent earlier in life or may develop as late as at two years old. The rash typically spreads to the arms and legs and may or may not involve the buttocks. The trunk and belly are generally spared. Over time and usually by early childhood, the inflammation tends to recede and the skin of affected areas develops into a more chronic pattern of rash known as poikiloderma, characterized by telangiectases (prominent, small, spider-like blood vessels); small spots of atrophy (skin tissue degeneration or thinning); and areas of abnormal skin pigmentation alternating between increased pigment (hyperpigmentation) and decreased pigment (hypopigmentation), giving a lacy, web-like, or mottled appearance.

Sensitivity of the skin to sun exposure (photosensitivity) has been reported in some patients, and the rash tends to affect areas that are more sun-exposed. However, it is important to note that the rash is not always limited to sun-exposed areas (e.g., buttocks). In some cases, affected individuals report a history of blistering (bullae) on the skin that may or may not be related to sun exposure. Blistering tends to diminish as patients reach late childhood.

One of the other skin manifestations of RTS that tends to be more prominent in adulthood is a condition called hyperkeratosis, where certain areas such as the palms and soles, knees and sometimes around the fingers or toes, become thickened and overgrown and develop a rough, wart-like (verrucous) texture. In severe cases, large, verrucous overgrowth of certain areas may cause significant discomfort or restriction of activities.

In addition, many patients with RTS have sparse scalp hair, and some may have complete baldness (alopecia). In many cases, eyebrows, eyelashes, and body hair may also be sparse or absent. In some patients, the nails may be malformed (dystrophic) and/or unusually small (hypoplastic).

Ophthalmic findings:

Between the ages of approximately two to seven years of age, some children with RTS may also develop sudden clouding of the lenses of both eyes (bilateral juvenile cataracts). Such cataracts typically are opaque, semisolid, white dots appearing on one broad or narrow area of an otherwise clear lens (zonular or lamellar cataract). Development of such cataracts may result in severe visual impairment or loss within weeks, and prompt surgical intervention by an eye specialist (ophthalmologist) can usually restore vision.

Growth and development:

A large percentage of individuals with RTS experience abnormally slow growth before and after birth (prenatal and postnatal growth retardation), leading to mild to moderate small stature. This small stature is symmetrical for height and weight, and patients have proportional development of the upper and lower body.

Bone and teeth abnormalities:

A large percentage of patients have bone abnormalities that may or may not be visible clinically. One of the most obvious abnormalities is a radial ray defect, which is manifest as small, malformed or missing thumbs or shortened forearms. Other bones in the body, particularly those in the arms, hands, and legs, can also be abnormally formed, shortened, or fused, and some of these bone findings can only be seen on x-rays. Some patients may also have characteristic abnormalities of the craniofacial area including a prominent forehead (frontal bossing) or a sunken nasal bridge (saddle nose).

Gastrointestinal and feeding problems:

Many infants and young children with RTS experience gastrointestinal disturbances including non-specific vomiting and diarrhea that are often attributed to intolerance of milk or formula. Some patients require feeding tubes to maintain nutritional intake. However, in virtually all cases, these issues resolve by childhood.


Individuals with RTS have an increased risk of developing cancer, particularly osteosarcoma and non-melanoma skin cancers (squamous and basal cell carcinomas). While these are the most frequent cancers encountered in RTS, there have been a few patients reported who developed squamous cell carcinoma of the head and neck region and hematologic malignancies such as leukemia.


Some individuals with RTS may demonstrate hypogonadism, a condition characterized by deficient activity of the gonads (i.e., ovaries in females or testes in males). As a result, affected females may experience irregular menstruation, while both affected males and females may have delayed sexual development. In those affected individuals with hypogonadism, fertility may be reduced; however, some patients (both male and female) have had children.


Rothmund-Thompson syndrome is a genetic disorder that is inherited in an autosomal recessive pattern. Approximately 2/3 of individuals with RTS are found to have an abnormality (mutation) in the RECQL4 gene. This gene is responsible for production of a protein whose function is not well understood but is involved in the replication of DNA, the genetic material in the cells of the body. Since about 1/3 of affected individuals do not have detectable mutations in this gene, other as yet undiscovered genes are probably also associated with RTS.

Autosomal recessive genetic disorders occur when an individual inherits two copies of an abnormal gene for the same trait, one from each parent. If an individual receives one normal gene and one abnormal (mutated) gene, the person will be a carrier for the disease but usually will not show symptoms. The risk for two carrier parents to both pass the mutated gene onto an affected child is 25% with each pregnancy. The risk to have a child who is a carrier like the parents is 50% with each pregnancy. The chance for a child to receive normal genes from both parents and be genetically normal for that particular trait is 25%. The risk is the same for males and females. Parents who are close relatives (consanguineous) have a higher chance than unrelated parents to both carry the same abnormal gene, which increases the risk of having children with the disease.

Affected Populations

RTS has been diagnosed in persons of all races and has been described in multiple nationalities; therefore, it does not appear that there is any particular population at increased risk for developing the disease. RTS was first described in 1868 by Dr. Auguste Rothmund, a German ophthalmologist who described the characteristic rash and juvenile cataracts in his patients. In 1921, Dr. Sydney Thomson, who was a British dermatologist, described a very similar rash along with bone findings in his patients. Later in 1957, Dr. William Taylor in the United States proposed that the disorders were the same and coined the eponym "Rothmund-Thomson Syndrome." Since the original reporting of RTS, over 300 cases have been recorded in the medical literature. Currently RTS is divided into two types: Type I RTS, which is not associated with mutations in the RECQL4 gene and may include the original Rothmund phenotype of bilateral juvenile cataracts; and Type II RTS, which is associated with mutations in the RECQL4 gene, bone abnormalities, and increased risk for osteosarcoma.

Standard Therapies

Rothmund-Thompson syndrome is diagnosed based on the onset, appearance and progression of the poikilodermatous rash. A diagnosis of RTS may be suspected if the rash is present but atypical and other physical characteristics associated with RTS are present. Molecular genetic testing for the RECQL4 gene is available to confirm the diagnosis, although in one-third of cases of RTS this test can be negative. Thus, a negative test does not rule out the diagnosis of RTS, but a positive test is confirmatory.


The treatment of Rothmund-Thomson syndrome is directed toward the specific symptoms that are apparent in each individual. Treatment may require the coordinated efforts of a team of specialists. Pediatricians, surgeons, physicians who specialize in the diagnosis and treatment of disorders of the skin (dermatologists), doctors who specialize in genetic disorders (geneticists), eye specialists (ophthalmologists), specialists who diagnose and treat bone disorders (orthopedists), dental specialists, and/or other health care professionals may need to systematically and comprehensively plan an affected child's management.

Specific therapies for the treatment of RTS are symptomatic and supportive. Special measures may be recommended to protect affected individuals from sun exposure (e.g., use of topical sunscreens, sunglasses, etc.). Because patients are prone to developing skin cancer (e.g., squamous or basal cell carcinomas), physicians may closely monitor affected skin areas to ensure prompt detection and treatment of skin malignancies.

In addition, because some individuals with RTS are more prone to developing certain non-skin related malignancies (e.g., osteosarcoma) than the general population, physicians may closely monitor affected individuals to ensure early detection and prompt, appropriate treatment. Effective therapies for osteosarcoma and other cancers are currently available, and it appears that patients with RTS are able to tolerate these therapies similar to cancer patients in the general population.

Because serious visual impairment or loss may result from cataracts, infants and children with RTS should be closely monitored by pediatricians and ophthalmologists to ensure immediate detection of cataracts and prompt, appropriate treatment. Surgical removal of opacified lenses can be performed to prevent serious visual impairment or loss.

Dental abnormalities potentially occurring in association with RTS may be treated through surgery, use of dentures and other artificial devices (prosthetics), and/or other supportive techniques.

Pulsed dye laser has been used to treat the telangiectatic component of the rash.

Genetic counseling is recommended for affected individuals and their families. Other treatment for this disorder is symptomatic and supportive.

Investigational Therapies

Information on current clinical trials is posted on the Internet at All studies receiving U.S. government funding, and some supported by private industry, are posted on this government web site.

For information about clinical trials being conducted at the NIH Clinical Center in Bethesda, MD, contact the NIH Patient Recruitment Office:

Tollfree: (800) 411-1222

TTY: (866) 411-1010


For information about clinical trials sponsored by private sources, contact:

Researchers at Texas Children's Hospital and Texas Children's Cancer Center at Baylor College of Medicine are studying the genetics and biology of Rothmund-Thomson Syndrome (RTS), and they have enrolled an international group of RTS patients in these studies. For information, contact Dr. Lisa L. Wang at (832) 824-4822 (e-mail: The research team may also be contacted by mail at 6621 Fannin, MC 3-3320, Houston, Texas, 77030. The fax number is (832) 825-4276.

NORD is does not support or promote any of these studies.



Hicks MJ, Roth J, Kozinetz CA, Wang LL. Clinicopathologic Features of Osteosarcoma in Patients with Rothmund-Thomson Syndrome. J Clin Oncol. 2007;25:370-375.

Hanada K, Hickson I. Molecular genetics of RecqQ helicase disorders. Cell Mol Life Sci. 2007;64: 2306-2322.

Van Maldergem L, Siitonen HA, Jalkh N, et al. Revisiting the craniosynostosis-radial ray hypoplasia association: Baller-Gerold syndrome caused by mutations in the RECQL4 gene. J Med Genet. 2006; 43: 148-52.

Wang LL, Gannavarapu A, Kozinetz CA, et al. Association between osteosarcoma and deleterious mutations in the RECQL4 gene in Rothmund-Thomson syndrome. J Natl Cancer Inst. 2003; 95: 669-74.

Siitonen HA, Kopra O, Kaariainen H, et al. Molecular defect of RAPADILINO syndrome expands the phenotype spectrum of RECQL diseases. Hum Mol Genet. 2003; 12: 2837-44.

Wang LL, Levy ML, Lewis RA, et al. Clinical manifestations in a cohort of 41 Rothmund-Thomson syndrome patients. Am J Med Genet. 2001; 102: 11-7.

Pujol LA, et al. Variable presentation of Rothmund-Thomson syndrome. Am J Med Genet. 2000;95:204-07.

Anbari KK, et al. Two primary osteosarcomas in a patient with Rothmund-Thomson syndrome. Clin Orthop. 2000;378:213-23.

Lindor NM, et al. Rothmund-Thomson syndrome due to RECQ4 helicase mutations: report and clinical and molecular comparisons with Bloom syndrome and Werner syndrome. Am J Med Genet. 2000;90:223-28.

Grant SG, et al. Analysis of genomic instability using multiple assays in a patient with Rothmund-Thomson syndrome. Clin Genet. 2000;58:209-15.

Kitao S, et al. Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome. Nature Genet. 1999;22:82-84.

Kitao S, et al. Rothmund-thomson syndrome responsible gene, RECQL4: genomic structure and products. Genomics. 1999;61:268-76.

Vasseur F, et al. Excision repair defect in Rothmund Thomson syndrome. Acta Derm Venereol. 1999;79:150-52.

Kirchner J, et al. Rothmund-Thomson syndrome and osteosarcoma. Rontgenpraxis. 1999;52:71-73.

Lindor NM, et al. Rothmund-Thomson syndrome in siblings: evidence for acquired in vivo mosaicism. Clin Genet. 1996;49:124-29.

Vennos EM, et al. Rothmund-Thomson syndrome. Dermatol Clin. 1995;13:143-50.

Tong M. Rothmund-Thomson syndrome in fraternal twins. Pediatr Dermatol. 1995;12:134-47.

Orstavik KH, et al. Instability of lymphocyte chromosomes in a girl with Rothmund-Thomson syndrome. J Med Genet. 1994;31:570-72.

Drouin CA, et al. Rothmund-Thomson syndrome with osteosarcoma. J Am Acad Dermatol. 1993;28:301-05.

Vennos EM, et al. Rothmund-Thomson syndrome: review of the world literature. J Am Acad Dermatol. 1992;27:750-62.

Ying KL, et al. Rothmund-Thomson syndrome associated with trisomy 8 mosaicism. J Med Genet. 1990;27:258-60.

Starr DG, et al. Non-dermatological complications and genetic aspects of the Rothmund-Thomson syndrome. Clin Genet. 1985;27:102-04.

Hall JC, et al. Rothmund-Thomson syndrome with severe dwarfism. Am J Dis Child. 1980;134:165-69.

Thomson MS. Poikiloderma congenitale. Brit J Derm. 1936;48:221-234.

Rothmund A. Ueber Cataracte in Verbindung mit einer eigenthuemlichen Hautdegeneration. Albrecht von Graefes Arch Klin Exp Ophthal. 1868;14:159-82.


Wang LL, Plon SE. (Updated April 7, 2009). Rothmund-Thomson Syndrome. In: GeneReviews at GeneTests: Medical Genetics Information Resource (database online). Copyright, University of Washington, Seattle. 1993-2012. Available at Accessed March 9, 2012.

Online Mendelian Inheritance in Man (OMIM). The Johns Hopkins University. Rothmund-Thomson Syndrome; RTS. Entry No: 268400. Last Edited November 30, 2010. Available at: Accessed March 9, 2012.


Human Growth Foundation

997 Glen Cove Avenue

Suite 5

Glen Head, NY 11545

Tel: (516)671-4041

Fax: (516)671-4055

Tel: (800)451-6434



MAGIC Foundation

6645 W. North Avenue

Oak Park, IL 60302

Tel: (708)383-0808

Fax: (708)383-0899

Tel: (800)362-4423



National Foundation for Ectodermal Dysplasias

6 Executive Drive

Suite 2

Fairview Hiights, IL 62208-1360

Tel: (618)566-2020

Fax: (618)566-4718



Lighthouse International

111 E 59th St

New York, NY 10022-1202

Tel: (800)829-0500



National Association for Parents of Children with Visual Impairments (NAPVI)

P.O. Box 317

Watertown, MA 02272-0317

Tel: (617)972-7441

Fax: (617)972-7444

Tel: (800)562-6265



Little People of America, Inc.

250 El Camino Real Suite 201

Tustin, CA 92780

Tel: (714)368-3689

Fax: (714)368-3367

Tel: (888)572-2001



NIH/National Institute of Arthritis and Musculoskeletal and Skin Diseases

Information Clearinghouse

One AMS Circle

Bethesda, MD 20892-3675


Tel: (301)495-4484

Fax: (301)718-6366

Tel: (877)226-4267

TDD: (301)565-2966



NIH/National Eye Institute

31 Center Dr

MSC 2510

Bethesda, MD 20892-2510

United States

Tel: (301)496-5248

Fax: (301)402-1065



NIH/National Institute of Dental and Craniofacial Research

Building 31, Room 2C39

31 Center Drive, MSC 2290

Bethesda, MD 20892


Tel: (301)496-4261

Fax: (301)480-4098

Tel: (866)232-4528



Coalition for Heritable Disorders of Connective Tissue (CHDCT)

4301 Connecticut Avenue, NW Suite 404

Washington, DC 20008

Tel: (202)362-9599

Fax: (202)966-8553

Tel: (800)778-7171



Genetic and Rare Diseases (GARD) Information Center

PO Box 8126

Gaithersburg, MD 20898-8126

Tel: (301)251-4925

Fax: (301)251-4911

Tel: (888)205-2311

TDD: (888)205-3223


Madisons Foundation

PO Box 241956

Los Angeles, CA 90024

Tel: (310)264-0826

Fax: (310)264-4766



For a Complete Report

This is an abstract of a report from the National Organization for Rare Disorders, Inc.® (NORD). Cigna members can access the complete report by logging into For non-Cigna members, a copy of the complete report can be obtained for a small fee by visiting the NORD website. The complete report contains additional information including symptoms, causes, affected population, related disorders, standard and investigational treatments (if available), and references from medical literature. For a full-text version of this topic, see