Tetrahydrobiopterin Deficiency

National Organization for Rare Disorders, Inc.

Skip to the navigation


It is possible that the main title of the report Tetrahydrobiopterin Deficiency is not the name you expected. Please check the synonyms listing to find the alternate name(s) and disorder subdivision(s) covered by this report.


  • Atypical Hyperphenylalaninemia
  • BH4 Deficiency
  • Malignant Hyperphenylalaninemia
  • Atypical PKU
  • Malignant PKU

Disorder Subdivisions

  • None

General Discussion

Tetrahydrobiopterin Deficiency is a rare genetic, neurological disorder present at birth. It is caused by an inherited inborn error of metabolism. Tetrahydrobiopterin is a natural substance (coenzyme) that enhances the action of other enzymes. When Tetrahydrobiopterin is deficient, an abnormally high blood level of the amino acid phenylalanine, along with low levels of certain neurotransmitters, usually occurs. To avoid irreversible neurological damage, diagnosis and treatment of this progressive disorder is essential as early as possible in life.

The subdivisions of Tetrahydrobiopterin Deficiency are as follows:

Tetrahydrobiopterin Synthesis

GTP Cyclohydrolase I (GTPCH) Deficiency

6-Pyruvoyl Tetrahydropterin Synthase (PTPS) Deficiency

Tetrahydrobiopterin Regeneration

Pterin-4-alpha-Carbinolamine Dehydratase (PCD) Deficiency

Dihydropteridine Reductase (DHPR) Deficiency


Generally, Tetrahydrobiopterin Deficiency first manifests with neurological problems despite appearing normal at birth, including abnormal muscle tone, poor sucking and coordination, seizures, and delayed motor development. Without appropriate treatment, irreversible neurologic deterioration invariably occurs, including mental retardation, seizures and even death.


Tetrahydrobiopterin Deficiency results from mutations (changes) in any one of multiple genes that are responsible for enzymes that help maintain adequate levels of tetrahydrobiopterin (I.e., the enzymes GTP-cyclohydrolase, 6-pyruvoyl tetrahydropterin synthase, pterin-4-alpha-carbinolamine dehydratase, and dihydropteridine reductase). Mutations that decrease enzyme activity sufficiently result in inadequate levels of tetrahydrobiopterin. Tetrahydrobiopterin is an essential cofactor for multiple enzymes involved in the metabolism of the amino acid phenylalanine, and the production of brain neurotransmitters. Deficiency leads to elevated levels of phenylalanine, and decreased levels of brain neurotransmitters, resulting in disease. Unlike PKU, treatment with phenylalanine restricted diet alone is insufficient because brain neurotransmitter deficiencies would still remain.

Tetrahydrobiopterin Deficiency is inherited in a fashion known as "autosomal recessive". Normally we receive two copies of every gene, one from our mother and one from our father. In order for a person to develop an autosomal recessive disease such as Tetrahydrobiopterin Deficiency, that individual must inherit a defective copy of the disease-causing gene from both his or her mother and father. Individuals who have one working copy and one defective copy of such a gene will usually not develop symptoms and are therefore called "carriers". A carrier is unaffected, but may pass on the defective copy to his children. For two people who are both carriers of a recessive disorder such as Tetrahydrobiopterin Deficiency, there is a 25% chance with each pregnancy that their child will inherit both defective copies and will thus be affected. There is a 50% chance with each pregnancy that their child will inherit one defective copy and one working copy and will thus be unaffected but a carrier. There is a 25% chance with each pregnancy that their child will inherit no defective copies and will thus be both unaffected and also not a carrier. This risk remains the same with each pregnancy. Consultation is recommended with a clinical geneticist for genetic counseling.

Affected Populations

Tetrahydrobiopterin Deficiency has been diagnosed in a diversity of ethnic groups worldwide. In the United States, it is estimated to affect one to three percent of infants diagnosed with high levels of phenylalanine by newborn screening. Phenylketonuria (PKU) occurs at a rate of approximately 1:15,000 live births in the United States. Tetrahydrobiopterin Deficiency therefore, in comparison, occurs with a much lower frequency of approximately 1:1,000,000 live births in the United States.

Standard Therapies


Tetrahydrobiopterin Deficiency is usually diagnosed through laboratory analysis of blood phenylalanine levels, urine pterin levels, and blood spot DHPR enzyme activity. Occasionally a special test is done which involves drinking a solution containing tetrahydrobiopterin, followed by obtaining frequent blood levels of phenylalanine. Once the diagnosis is made, more specific studies of enzyme activity, and lumbar puncture to analyze CSF neurotransmitters is essential. Consultation with a doctor experienced in biochemical genetics is recommended for diagnosis and treatment.


Treatment of Tetrahydrobiopterin Deficiency should be started as early as possible to attempt to reduce or prevent irreversible complications such as brain damage. Dietary phenylalanine restriction alone is not sufficient to prevent complications related to neurotransmitter deficiency. However, a low phenylalanine diet may be a part of the prescribed regimen. Treatment options will differ depending on the precise enzyme deficiency responsible for the disease, and its severity. This may involve a regimen of dietary phenylalanine restriction, and/or oral tetrahydrobiopterin supplementation alone or in combination with neurotransmitter replacement (plus oral vitamin supplementation with folinic acid in DHPR deficiency).

Investigational Therapies

Information on current clinical trials is posted on the Internet at www.clinicaltrials.gov. All studies receiving U.S. government funding, and some supported by private industry, are posted on this government web site.

For information about clinical trials being conducted at the NIH Clinical Center in Bethesda, MD, contact the NIH Patient Recruitment Office:

Tollfree: (800) 411-1222

TTY: (866) 411-1010

Email: prpl@cc.nih.gov

For information about clinical trials sponsored by private sources, contact:




Blau N, et al. Disorders of tetrahydrobiopterin and related biogenic amines. In: Scriber CR, et al., eds. The Metabolic and Molecular Bases of Inherited Diseases. New York:McGraw-Hill;2001:1725-76.


Fukuda K, et al. Hyperphenylalaninaemia due to impaired dihydrobiopterin biosynthesis: leukocyte function and effect of tetrahydrobiopterin therapy. J Inherited Metab Dis. 1985;8:4952.

Kaufman S. Hyperphenylalaninaemia caused by defects in biopterin metabolism. J Inherited Metab Dis. 1985;1:20-27.

Neiderweiser A, et al. Hyperphenylalaninaemia due to impaired dihydrobiopterin differential diagnosis of tetrahydrobiopterin deficiency. J Inherited Metab Dis. 1985;8:34-38.


Scheinfeld N, et al. Tetrahydrobiopterin deficiency. Emedicine Journal [serial online] (2003). Available at: http://www.emedicine.com


CLIMB (Children Living with Inherited Metabolic Diseases)

Climb Building

176 Nantwich Road

Crewe, CW2 6BG

United Kingdom

Tel: 4408452412173

Fax: 4408452412174

Email: enquiries@climb.org.uk

Internet: http://www.CLIMB.org.uk

The Arc

1825 K Street NW, Suite 1200

Washington, DC 20006

Tel: (202)534-3700

Fax: (202)534-3731

Tel: (800)433-5255

TDD: (817)277-0553

Email: info@thearc.org

Internet: http://www.thearc.org

NIH/National Institute of Neurological Disorders and Stroke

P.O. Box 5801

Bethesda, MD 20824

Tel: (301)496-5751

Fax: (301)402-2186

Tel: (800)352-9424

TDD: (301)468-5981

Internet: http://www.ninds.nih.gov/

Genetic and Rare Diseases (GARD) Information Center

PO Box 8126

Gaithersburg, MD 20898-8126

Tel: (301)251-4925

Fax: (301)251-4911

Tel: (888)205-2311

TDD: (888)205-3223

Internet: http://rarediseases.info.nih.gov/GARD/

For a Complete Report

This is an abstract of a report from the National Organization for Rare Disorders, Inc.® (NORD). Cigna members can access the complete report by logging into myCigna.com. For non-Cigna members, a copy of the complete report can be obtained for a small fee by visiting the NORD website. The complete report contains additional information including symptoms, causes, affected population, related disorders, standard and investigational treatments (if available), and references from medical literature. For a full-text version of this topic, see http://www.rarediseases.org/search/rdblist.html.