Carcinoma of the large bowel is rare in the pediatric age group.[1] It is seen in one case per 1 million persons younger than 20 years in the United States annually; fewer than 100 cases are diagnosed in children each year in the United States.[2] From 1973 to 2006, the Surveillance, Epidemiology, and End Results (SEER) database recorded 174 cases of colorectal cancer in patients younger than 19 years.[3] Colorectal carcinoma accounts for about 2% of all malignancies in patients aged 15 to 29 years.[4] An analysis of SEER data identified 5,350 adolescents and young adults (AYA) between the ages of 15 and 39 years with colorectal cancer from 2010 to 2015.[5] Right-sided tumors (cecum to transverse colon) were diagnosed in 28.6% of AYA cases. The proportion of right-sided colorectal cancers differed significantly by age group at diagnosis (38.3% of AYA patients aged 15–19 years vs. 27.3% of AYA patients aged 35–39 years). The incidence of mucinous adenocarcinoma and signet ring cell carcinoma histopathologic subtypes was higher in younger patients.
References:
Colorectal tumors can occur in any location in the large bowel. Larger series and reviews suggest that ascending and descending colon tumors are each seen in approximately 30% of cases, with rectal tumors occurring in approximately 25% of cases.[1,2,3]
Signs and symptoms in children with descending colon tumors include the following:
The median duration of symptoms before diagnosis was about 3 months in one series.[4,5]
Changes in bowel habits may be associated with tumors of the rectum or lower colon.
Tumors of the right colon may cause more subtle symptoms but are often associated with the following:
Any tumor that causes complete obstruction of the large bowel can cause bowel perforation and spread of the tumor cells within the abdominal cavity.
References:
Diagnostic studies include the following:[1,2]
References:
There is a higher incidence of mucinous adenocarcinoma in the pediatric and adolescent age group (40%–50%), with many lesions being the signet ring cell type,[1,2,3,4,5] whereas only about 15% of adult lesions are of this histology. The tumors of younger patients with this histologic variant may be less responsive to chemotherapy. In the adolescent and young adult population with the mucinous histology, there is a higher incidence of signet ring cells, microsatellite instability, and mutations in the mismatch repair genes.[5,6,7] Tumors with mucinous histology arise from the surface of the bowel, usually at the site of an adenomatous polyp. The tumor may extend into the muscle layer surrounding the bowel, or the tumor may perforate the bowel entirely and seed through the spaces around the bowel, including intra-abdominal fat, lymph nodes, liver, ovaries, and the surface of other loops of bowel. A high incidence of metastasis involving the pelvis, ovaries, or both may be present in girls.[8]
Colorectal cancers in younger patients with noninherited sporadic tumors often lack KRAS mutations and other cytogenetic anomalies seen in older patients.[9] In a genomic study that used exome and RNA sequencing to identify mutational differences in colorectal carcinomas of adults (n = 30), adolescents and young adults (n = 30), and children (n = 2), five genes (MYCBP2, BRCA2, PHLPP1, TOPORS, and ATR) were identified that were more frequently mutated in adolescents and young adult patients. These genes contained a damaging mutation and were identified through whole-exome sequencing and RNA sequencing. In addition, higher mutational rates in DNA mismatch and DNA repair pathways, such as MSH2, BRCA2, and RAD9B, were more prevalent in adolescent and young adult samples but the results were not validated by RNA sequencing.[10]
References:
Most reports also suggest that children present with more advanced disease than do adults, with 80% to 90% of patients presenting with Dukes stage C/D or TNM stage III/IV disease (refer to the Stage Information for Colon Cancer section of the PDQ summary on adult Colon Cancer Treatment for more information about staging).[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]
References:
Most patients present with evidence of metastatic disease,[1] either as gross tumor or as microscopic deposits in lymph nodes, on the surface of the bowel, or on intra-abdominal organs.[2,3] Of almost 160,000 patients with colorectal cancer included in the National Cancer Database, 918 pediatric patients were identified. Age younger than 21 years was a significant predictor of increased mortality.[4]
Treatment options for childhood colorectal cancer include the following:
A recent review of nine clinical trials comprising 138 patients younger than 40 years demonstrated that the use of combination chemotherapy improved progression-free survival and overall survival (OS) in these patients. Furthermore, OS and response rates to chemotherapy were similar to those observed in older patients.[8][Level of evidence: 2A]
Ipilimumab and nivolumab demonstrated high response rates in pediatric patients aged 12 years and older with microsatellite instability–high or mismatch repair–deficient metastatic colorectal cancer who had disease progression after treatment with a fluoropyrimidine, oxaliplatin, and irinotecan.[9]
Other active agents used in adults include oxaliplatin, bevacizumab, panitumumab, cetuximab, aflibercept, and regorafenib.[10,11,12,13]
Survival is consistent with the advanced stage of disease observed in most children with colorectal cancer, with an overall mortality rate of approximately 70%. For patients with a complete surgical resection or for those with low-stage/localized disease, survival is significantly prolonged, with the potential for cure.[14]
References:
Information about National Cancer Institute (NCI)–supported clinical trials can be found on the NCI website. For information about clinical trials sponsored by other organizations, refer to the ClinicalTrials.gov website.
The following is an example of a national and/or institutional clinical trial that is currently being conducted:
Tumor tissue from progressive or recurrent disease must be available for molecular characterization. Patients with tumors that have molecular variants addressed by treatment arms included in the trial will be offered treatment on Pediatric MATCH. Additional information can be obtained on the NCI website and ClinicalTrials.gov website.
About 20% to 30% of adult patients with colorectal cancer have a significant history of familial cancer; of these, about 5% have a well-defined genetic syndrome.[1] Hereditary colorectal cancer has two well-described forms:[2,3]
Other colorectal cancer syndromes and their associated genes include oligopolyposis (POLE, POLD1),[3]NTHL1,[4] juvenile polyposis syndrome (BMPR1A, SMAD4), Cowden syndrome (PTEN), and Peutz-Jeghers syndrome (STK11).[2] (Refer to the PDQ summary on Genetics of Colorectal Cancer for more information related to these syndromes.)
The incidence of these genetic syndromes in children has not been well defined, as follows:
Familial polyposis is inherited as a dominant trait, which confers a high degree of risk. Early diagnosis and surgical removal of the colon eliminates the risk of developing carcinomas of the large bowel.[8,9] Some colorectal carcinomas in young people, however, may be associated with a mutation of the APC gene, which also is associated with an increased risk of brain tumors and hepatoblastoma.[10] FAP syndrome is caused by mutation of a gene on chromosome 5q, which normally suppresses proliferation of cells lining the intestine and later development of polyps.[11] A double-blind, placebo-controlled, randomized phase I trial in children aged 10 to 14 years with FAP reported that celecoxib at a dose of 16 mg/kg per day is safe for administration for up to 3 months. At this dose, there was a significant decrease in the number of polyps detected on colonoscopy.[12][Level of evidence: 1iiDiv] The role of celecoxib in the management of FAP in children is not clear.
Another tumor suppressor gene on chromosome 18 is associated with progression of polyps to malignant form. Multiple colon carcinomas have been associated with neurofibromatosis type I and several other rare syndromes.[13]
Despite the increased risk of multiple malignancies in families with Lynch syndrome, the risk of malignant neoplasms during childhood in those families does not seem to be increased when compared with the risk in children from non-Lynch syndrome colorectal carcinoma families.[14]
References:
Cancer in children and adolescents is rare, although the overall incidence of childhood cancer has been slowly increasing since 1975.[1] Referral to medical centers with multidisciplinary teams of cancer specialists experienced in treating cancers that occur in childhood and adolescence should be considered for children and adolescents with cancer. This multidisciplinary team approach incorporates the skills of the following health care professionals and others to ensure that children receive treatment, supportive care, and rehabilitation that will achieve optimal survival and quality of life:
(Refer to the PDQ Supportive and Palliative Care summaries for specific information about supportive care for children and adolescents with cancer.)
Guidelines for pediatric cancer centers and their role in the treatment of pediatric patients with cancer have been outlined by the American Academy of Pediatrics.[2] At these pediatric cancer centers, clinical trials are available for most types of cancer that occur in children and adolescents, and the opportunity to participate in these trials is offered to most patients and their families. Clinical trials for children and adolescents diagnosed with cancer are generally designed to compare potentially better therapy with therapy that is currently accepted as standard. Most of the progress made in identifying curative therapy for childhood cancers has been achieved through clinical trials. Information about ongoing clinical trials is available from the NCI website.
Dramatic improvements in survival have been achieved for children and adolescents with cancer. Between 1975 and 2010, childhood cancer mortality decreased by more than 50%.[3] Childhood and adolescent cancer survivors require close monitoring because cancer therapy side effects may persist or develop months or years after treatment. (Refer to the PDQ summary on Late Effects of Treatment for Childhood Cancer for specific information about the incidence, type, and monitoring of late effects in childhood and adolescent cancer survivors.)
Childhood cancer is a rare disease, with about 15,000 cases diagnosed annually in the United States in individuals younger than 20 years.[4] The U.S. Rare Diseases Act of 2002 defines a rare disease as one that affects populations smaller than 200,000 persons. Therefore, all pediatric cancers are considered rare.
The designation of a rare tumor is not uniform among pediatric and adult groups. Adult rare cancers are defined as those with an annual incidence of fewer than six cases per 100,000 people, and they are estimated to account for up to 24% of all cancers diagnosed in the European Union and about 20% of all cancers diagnosed in the United States.[5,6] Also, the designation of a pediatric rare tumor is not uniform among international groups, as follows:
Most cancers within subgroup XI are either melanomas or thyroid cancer, with the remaining subgroup XI cancer types accounting for only 1.3% of cancers in children aged 0 to 14 years and 5.3% of cancers in adolescents aged 15 to 19 years.
These rare cancers are extremely challenging to study because of the low incidence of patients with any individual diagnosis, the predominance of rare cancers in the adolescent population, and the lack of clinical trials for adolescents with rare cancers.
Information about these tumors may also be found in sources relevant to adults with cancer such as the PDQ summaries on adult Colon Cancer Treatment and adult Rectal Cancer Treatment.
References:
The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.
Incidence
Added text about the results of an analysis of Surveillance, Epidemiology, and End Results (SEER) data that identified 5,350 adolescents and young adults between the ages of 15 and 39 years with colorectal cancer from 2010 to 2015 (cited Holowatyj et al. as reference 5).
This summary is written and maintained by the PDQ Pediatric Treatment Editorial Board, which is editorially independent of NCI. The summary reflects an independent review of the literature and does not represent a policy statement of NCI or NIH. More information about summary policies and the role of the PDQ Editorial Boards in maintaining the PDQ summaries can be found on the About This PDQ Summary and PDQ® - NCI's Comprehensive Cancer Database pages.
Purpose of This Summary
This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the treatment of pediatric colorectal cancer. It is intended as a resource to inform and assist clinicians who care for cancer patients. It does not provide formal guidelines or recommendations for making health care decisions.
Reviewers and Updates
This summary is reviewed regularly and updated as necessary by the PDQ Pediatric Treatment Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).
Board members review recently published articles each month to determine whether an article should:
Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.
The lead reviewers for Childhood Colorectal Cancer Treatment are:
Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website's Email Us. Do not contact the individual Board Members with questions or comments about the summaries. Board members will not respond to individual inquiries.
Levels of Evidence
Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Pediatric Treatment Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.
Permission to Use This Summary
PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as "NCI's PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary]."
The preferred citation for this PDQ summary is:
PDQ® Pediatric Treatment Editorial Board. PDQ Childhood Colorectal Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/types/colorectal/hp/child-colorectal-treatment-pdq. Accessed <MM/DD/YYYY>.
Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in Visuals Online, a collection of over 2,000 scientific images.
Disclaimer
Based on the strength of the available evidence, treatment options may be described as either "standard" or "under clinical evaluation." These classifications should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.
Contact Us
More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website's Email Us.
Last Revised: 2021-02-11
This information does not replace the advice of a doctor. Healthwise, Incorporated, disclaims any warranty or liability for your use of this information. Your use of this information means that you agree to the Terms of Use. Learn how we develop our content.
Healthwise, Healthwise for every health decision, and the Healthwise logo are trademarks of Healthwise, Incorporated.
Follow Us
Disclaimer
Individual and family medical and dental insurance plans are insured by Cigna Health and Life Insurance Company (CHLIC), Cigna HealthCare of Arizona, Inc., Cigna HealthCare of Illinois, Inc., and Cigna HealthCare of North Carolina, Inc. Group health insurance and health benefit plans are insured or administered by CHLIC, Connecticut General Life Insurance Company (CGLIC), or their affiliates (see a listing of the legal entities that insure or administer group HMO, dental HMO, and other products or services in your state). Group Universal Life (GUL) insurance plans are insured by CGLIC. Life (other than GUL), accident, critical illness, hospital indemnity, and disability plans are insured or administered by Life Insurance Company of North America, except in NY, where insured plans are offered by Cigna Life Insurance Company of New York (New York, NY). All insurance policies and group benefit plans contain exclusions and limitations. For availability, costs and complete details of coverage, contact a licensed agent or Cigna sales representative. This website is not intended for residents of New Mexico.
Selecting these links will take you away from Cigna.com to another website, which may be a non-Cigna website. Cigna may not control the content or links of non-Cigna websites. Details