Potential Benefits and Harms
In general, the benefit of cancer screening derives from detecting cancer in earlier and more treatable stages, and thereby, reducing mortality from cancer. In addition, for some cancer types and screening modalities, such as endoscopic screening for colorectal cancer and Papanicolaou (Pap) smears for cervical cancer, screening can also prevent the occurrence of cancer by identifying and removing cancer precursors. Screening may also reduce cancer morbidity when the treatment for earlier-stage cancer is associated with fewer side effects than the treatment for advanced cancers.
Known harms from screening include the following:[1]
- The possibility of serious test-related complications, which may be immediate (e.g., perforation with colonoscopy) or delayed (e.g., potential carcinogenesis from radiation exposure).
- A false-positive screening test result, which may cause anxiety and lead to additional invasive diagnostic procedures.
- Overdiagnosis, which occurs when screening procedures detect cancers that would never become clinically apparent in the absence of screening.
- Overtreatment resulting from overdiagnosis.
Because screening tests themselves are generally noninvasive, immediate harms from the test are typically minor. Colonoscopy is an exception in that it is an invasive test. It also functions as a diagnostic follow-up examination for other colorectal cancer screening modalities, such as a fecal occult blood (FOB) test.
Commonly used screening tests, such as mammography for breast cancer and prostate-specific antigen (PSA) for prostate cancer, have false-positive rates per screen in the range of 5% to 10%; with repeat screening, cumulative false-positive rates for these tests are substantially higher.[2,3,4] Follow-up invasive diagnostic procedures, such as a prostate biopsy, are associated with low but non-negligible risks of complications. For screening tests such as colonoscopy or Pap smears where precursor lesions, in addition to invasive cancer, are targets of the screen, the definition of a false positive is modified from simply a positive screen in an individual without cancer. For example, for cervical cancer screening, a positive Pap smear with an eventual diagnosis of high-grade intraepithelial lesion (HSIL) would not be considered a false positive, since HSIL is a target lesion.
Overdiagnosis occurs when screening procedures detect cancers that would never become clinically apparent in the absence of screening. It is a special concern because identification of the cancer does not benefit the individual, while the side effects of diagnostic procedures and cancer treatment may cause significant harm. The overall harm of overdiagnosis is related to both the frequency of its occurrence, as well as to the downstream consequences of subsequent treatment. For example, in prostate cancer screening with PSA, there is a high rate of overdiagnosed disease and the harms of curative treatment, including impotence and urinary incontinence, are relatively common, serious, and long-lasting. Therefore, overdiagnosis is a major source of harms in PSA screening.[5] Some of the harms of overdiagnosis may be mitigated by strategies, such as active surveillance in prostate cancer, that attempt to defer immediate treatment in favor of following patients for any signs of worsening prognosis.
In general, overdiagnosis is more common in older individuals and those with otherwise limited life expectancy since the slowly growing lesions associated with overdiagnosed cancers have less time to become clinically apparent in such persons. Therefore, attempts have been made to discourage screening beyond certain age ranges; for example, most recommendations for mammography screening exclude women aged 75 or older and those with less than 10 years of life expectancy.[6]
In developing the cancer screening summaries, the PDQ Screening and Prevention Editorial Board uses the following definitions:
- Screening is a means of detecting disease early in asymptomatic people.
- Positive results of examinations, tests, or procedures may not be diagnostic but instead identify people who warrant further evaluation.
- Some positive screening tests require additional procedures, such as biopsies of the indicated organ. These may rule out cancer or confirm the diagnosis of cancer.
The PDQ does not issue clinical practice guidelines. Many public health organizations present guidelines for health care and screening activities. Their quality varies widely. Some rely on systematic reviews of evidence of variable quality. Some are influenced by the professional, financial, and intellectual interests of guideline authors and funders. These may conflict with the primary interest—the overall well-being of the patient.[7,8,9]
The highest quality guidelines as assessed by the Appraisal of Guidelines for Research and Evaluation (AGREE) are those based on the best systematic reviews as evaluated using the Assessment of Multiple Systematic Reviews (AMSTAR).
References:
- Kramer BS: The science of early detection. Urol Oncol 22 (4): 344-7, 2004 Jul-Aug.
- Grubb RL, Pinsky PF, Greenlee RT, et al.: Prostate cancer screening in the Prostate, Lung, Colorectal and Ovarian cancer screening trial: update on findings from the initial four rounds of screening in a randomized trial. BJU Int 102 (11): 1524-30, 2008.
- Hubbard RA, Kerlikowske K, Flowers CI, et al.: Cumulative probability of false-positive recall or biopsy recommendation after 10 years of screening mammography: a cohort study. Ann Intern Med 155 (8): 481-92, 2011.
- Aberle DR, Adams AM, Berg CD, et al.: Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365 (5): 395-409, 2011.
- Fenton JJ, Weyrich MS, Durbin S, et al.: Prostate-Specific Antigen-Based Screening for Prostate Cancer: Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 319 (18): 1914-1931, 2018.
- Siu AL; U.S. Preventive Services Task Force: Screening for Breast Cancer: U.S. Preventive Services Task Force Recommendation Statement. Ann Intern Med 164 (4): 279-96, 2016.
- Norris SL, Burda BU, Holmer HK, et al.: Author's specialty and conflicts of interest contribute to conflicting guidelines for screening mammography. J Clin Epidemiol 65 (7): 725-33, 2012.
- Ransohoff DF, Pignone M, Sox HC: How to decide whether a clinical practice guideline is trustworthy. JAMA 309 (2): 139-40, 2013.
- Lenzer J: Why we can't trust clinical guidelines. BMJ 346: f3830, 2013.