Learn about the medical, dental, pharmacy, behavioral, and voluntary benefits your employer may offer.
Cancer patients often have comorbid medical problems in addition to their underlying malignant disorders. In fact, patients older than 65 years bear a disproportionate burden of cancer as well as increased prevalence of medical problems such as chronic obstructive pulmonary disease, heart disease, diabetes, and hypertension.[
Clinicians caring for cancer patients should be familiar with the assessment and treatment of common conditions that manifest as chest symptoms. In addition, these clinicians need to be familiar with some cancer-specific aspects of chest symptoms and syndromes. Dyspnea is a common symptom of certain cancers such as lung cancer and is also common in patients with numerous advanced cancers. Dyspnea is often multifactorial. Optimal treatment requires an understanding of contributing etiologies and pathophysiologies to direct therapeutic interventions as clinically appropriate.
Important cardiopulmonary syndromes include the following:
In this summary, unless otherwise stated, evidence and practice issues as they relate to adults are discussed. The evidence and application to practice related to children may differ significantly from information related to adults. When specific information about the care of children is available, it is summarized under its own heading.
References:
Introduction
Dyspnea is defined as an uncomfortable awareness of breathing. It is a subjective experience involving many factors that modulate the quality and intensity of its perception. Patients with comparable degrees of functional lung impairment and disease burden may describe varying intensities of dyspnea. Patients use a host of different words and phrases to describe the sensation of breathlessness. Terms such as tightness and suffocating are sometimes used.[
Reports on the frequency of dyspnea also vary, depending on the setting and the extent of disease.[
Pathophysiology and Etiology
The pathophysiological mechanisms of breathlessness are numerous and complex.[
The qualities of dyspnea can be appreciated as work/effort, tightness, and air hunger. The experience of excess work and effort is caused by sensory-perceptual mechanisms similar to those involved in muscles exercising. Tightness is caused by stimulation of airway receptors with bronchoconstriction. The intensity of air hunger and unsatisfied inspiration is caused by the following:[
The direct causes of dyspnea in patients with advanced cancer are numerous; categorizing them can assist in the etiologic work-up. One approach is to divide direct causes into the following four groups:
One study found that in patients experiencing dyspnea from advanced cancer, a median of five different abnormalities could have contributed to their shortness of breath.[
No significant association between the type of respiratory impairment and the degree of dyspnea was found. Most of these patients were current or former smokers. Most patients also had a significant lowering of their maximum inspiratory pressures, suggesting severe respiratory muscle dysfunction.[
Respiratory muscle dysfunction is an underrecognized factor contributing to dyspnea. Causes of respiratory muscle dysfunction include:[
Poor oxygenation, muscle fatigue, abnormal cortisol and catecholamine levels, and circulating cytokines are also implicated.[
Although it is commonly believed that anxiety is associated with breathlessness, researchers found that anxiety and shortness of breath do not invariably go together.[
Assessment
The multidimensional nature of dyspnea must be noted in the complicated assessment of this symptom. Patient-reported outcome is the gold standard for assessment of dyspnea. There is no consensus on what constitutes the best instrument for assessing dyspnea, but following are some of the tools used:
These tools are limited, however, because they are unidimensional and do not account for the relative contribution of different factors to a patient's perception of breathlessness. Assessment should include the impact of dyspnea on the patient's functional status and appreciation of the dynamic component of dyspnea—namely, exertional dyspnea.
Objective signs such as tachypnea or the use of accessory breathing muscles frequently do not match a patient's perception of dyspnea and the degree of functional impairment it causes. Numerous factors, including psychosocial issues, may affect a patient's experience of dyspnea. Pulmonary function tests, with few exceptions, play a limited role in the assessment of this syndrome. Lack of a clear understanding of the pathophysiological mechanisms underlying dyspnea hampers the clinician's overall ability to effectively manage it.[
A comprehensive history and examination are essential to an accurate assessment of dyspnea.[
Although one-third of patients in the study looking at checkpoint inhibitor immunotherapy–related pneumonitis were asymptomatic, the most common presenting symptoms were the following:[
Melanoma and non-small cell lung cancer were the most common cancers treated in this study. Interestingly, the duration of treatment before the onset of pneumonitis was quite variable, with a median time to onset of 2.8 months (range, 9 days–19 months). In addition, pneumonitis seemed to occur earlier in patients who received combination therapy than in those who received monotherapy (median, 2.7 months vs. 4.6 months).[
Diagnostic tests that may help to determine the etiology of dyspnea include the following:[
Maximal inspiratory pressure (MIP) measurements may be helpful, particularly if no apparent cause can be found. MIP is a reliable functional test of the strength of the diaphragm and other respiratory muscles. Functional assessments such as the 6-minute walk test and exercise ergometry may also provide valuable information about the severity and impact of dyspnea.[
Management of Dyspnea
Management of underlying causes
As with all symptoms, it is essential to identify and treat the underlying cause(s) of dyspnea if possible and when appropriate. Examples of specific underlying causes (some of them potentially reversible) and their treatments include the following:
Symptomatic management
Symptomatic management of dyspnea is based primarily on the following:
Opioids represent an extremely effective treatment for dyspnea in cancer patients. Fear of side effects should not prevent the appropriate use of opioids in this setting. Most authorities believe that, if used appropriately, opioids do not hasten death in dyspneic cancer patients; rather, they reduce physical and psychological distress and exhaustion, and early use improves quality of life.[
Anecdotal and experimental evidence suggest a role for nebulized opioid administration in the treatment of dyspnea.[
Patients who are hypoxic on room air are likely to benefit from oxygen therapy, probably through a decrease in the chemoreceptor input to the respiratory center and the brain cortex. In two controlled trials, cancer patients with dyspnea who were randomly assigned in a crossover design showed significant improvement in their dyspnea.[
Other investigators have examined the effect of other oxygen delivery modalities on dyspnea in cancer patients, such as:[
These interventions may be reasonable options for patients with hypoxemia and refractory dyspnea despite the use of low-flow supplemental oxygen.
Other options suggested for symptomatic treatment include:
The role of methylxanthines in cancer-related dyspnea has not been clarified. Chlorpromazine and promethazine have been shown to decrease dyspnea without affecting ventilation in noncancer patients, but their role in cancer-related dyspnea is unclear. Four out of five randomized controlled trials failed to demonstrate any benefit for using benzodiazepines in cancer patients.[
One randomized single-blind study suggested that the combination of two scheduled medications (subcutaneous morphine and subcutaneous midazolam) and one as needed (subcutaneous morphine) for episodes of breakthrough dyspnea is more effective than the other evaluated combinations for controlling breakthrough dyspnea and requires further study.[
The role of benzodiazepines appears to be limited to treatment of dyspnea that is considered a somatic manifestation of a panic disorder or to use when a patient has concurrent severe anxiety. A randomized placebo-controlled trial of 432 patients failed to show improvement in dyspnea or anxiety with the nonbenzodiazepine anxiolytic drug buspirone compared with placebo in cancer patients who had moderate to severe dyspnea, although the dose of 20 mg was relatively low.[
Given the role inflammation may play in cancer and dyspnea, dexamethasone has been used for symptomatic treatment of dyspnea. A randomized controlled trial prospectively evaluated dexamethasone in a highly selected group of ambulatory patients who had an average dyspnea score of 4 or greater (on a numerical scale of 0–10).[
General support measures
In addition to adequate pharmacological therapies, a number of nonpharmacological measures are suggested. These include:
The effectiveness of these measures in relieving breathlessness appears to be variable.
Current Clinical Trials
Use our
References:
In some patients, chronic coughing may be the source of major suffering.[
The causes of cough can be classified much like the causes of dyspnea.
One approach to chronic cough in palliative care patients is to consider the differential diagnoses summarized below:
The optimal therapy for chronic cough is treatment of the underlying disorder, such as:
Cough-suppressing agents such as opioids are commonly utilized. Anecdotal evidence suggests a role for inhaled local anesthetics, which should be utilized judiciously and sparingly; they are unpleasant to the taste and obtund the gag reflex, and anaphylactic reactions to preservatives in these solutions have been documented. Opioid and nonopioid antitussives, such as dextromethorphan, may act synergistically, but further studies are required to confirm this hypothesis.[
In cases of increased sputum production, expectorants and mucolytics have been employed, but the effects have not been well evaluated. Inhaled sodium cromoglycate has shown promise as a safe method of controlling chronic coughing related to lung cancer.[
References:
Significance
Malignant pleural effusions are a common complication of malignancy, and malignancy is a common cause of pleural effusions in general. Malignancy accounts for roughly 40% of symptomatic pleural effusions, with congestive heart failure and infection being the other leading causes.[
Significant use of health care resources is attributable to malignant effusions, with approximately 100,000 cases per year being diagnosed in the United States and 43 cases being detected per 100,000 hospital admissions.[
Pathogenesis
The normal pleural fluid space is occupied with approximately 10 cc of fluid with 2 g/dL protein. A pleural effusion is an accumulation of an abnormal amount of fluid between the visceral and parietal pleura of the chest. Normally, pleural fluid is absorbed by pulmonary venous capillaries (80%–90%), with some of it also absorbed by pleural lymphatics. Malignant effusions are usually exudative rather than transudative. Exudative effusions exhibit any one of the following characteristics:[
These exudative malignant effusions are generally caused by:
Paramalignant effusions may result from chemotherapy, radiation therapy, atelectasis, or lymph node involvement.
Assessment
Common symptoms associated with malignant pleural effusions include:
About 20% of patients may experience weight loss and malaise. A chest x-ray is most commonly used for radiographic assessment. About 175 cc of pleural fluid will cause a blunted costophrenic angle discernible on chest radiography. A chest computerized tomography scan is more sensitive than a simple chest x-ray and is often used for assessment of loculated effusions because, in some instances, up to 500 cc of loculated fluid can be obscured behind the dome of the diaphragm.[
Not all pleural effusions detected in cancer patients will turn out to be malignant effusions. Cancer patients are prone to developing conditions such as:[
Each of these conditions may cause a symptomatic effusion for which the clinical management would substantially differ from the management of a malignant effusion. For this reason, cytologic assessment is important. Pleural fluid cytology requires a minimum sample of 250 cc. The morphology of cells obtained from the pleural space can be difficult to assess because of mesothelial and macrophage abnormalities. The diagnostic sensitivity of pleural fluid cytology is approximately 65%, with a specificity of 97%.[
Management of Malignant Pleural Effusions
To treat or not to treat
Pleural effusions are generally markers of advanced, unresectable disease or disease progression. The median survival for patients with malignant pleural effusions is around 3 to 4 months.[
About three-quarters of patients exhibit symptoms such as cough, dyspnea, and chest discomfort. Such patients may benefit from efforts to reduce the fluid burden, depending on the following:
The literature on the efficacy of treatment for pleural effusions is difficult to interpret because of the paucity of randomized trials, and the wide variability in the response criteria and the timing and duration of follow-up in uncontrolled trials.[
The choice of treatment depends on patient prognosis, functional status, and goals of care.
Thoracentesis
Thoracentesis involves percutaneous insertion of a needle for drainage of the effusion. Thoracentesis is not expected to permanently resolve the problem but rather to alleviate symptoms that are acute and severe. The use of thoracentesis is also appropriate as a therapeutic trial to determine whether fluid drainage is beneficial when the relationship between symptoms and effusion is unclear.
Most effusions will reaccumulate a few days after thoracentesis. The reaccumulation rate is approximately 98% by day 30.[
Chronic long-term indwelling tunneled pleural catheters
Indwelling pleural catheters (IPCs) represent an alternative to pleurodesis for patients with malignant pleural effusion whose dyspnea has responded to thoracentesis. IPCs are relatively contraindicated in patients with a short life expectancy, pleural infections, multiloculated collections, and chylothorax. The insertion of chronic long-term indwelling tunneled pleural catheters is useful against recurrent and symptomatic malignant pleural effusions, including for patients with trapped lung. These tunneled pleural catheters allow up to 96% of patients to achieve symptom improvement, with spontaneous pleurodesis occurring in up to 44% of patients.[
A randomized controlled trial comparing IPC and talc pleurodesis showed similar reduction of dyspnea (24 mm of 100 mm) and similar QOL.[
Use of pleural sclerosing agents after chest tube drainage
Chemical sclerosants may be administered through a chest tube to create inflammation and subsequent fusion of the parietal and visceral pleura so that fluid cannot reaccumulate in this potential space. This kind of fusion is called pleurodesis. Numerous chemical agents can cause the irritation necessary to produce pleurodesis. The ideal agent would produce effective pleurodesis with minimal cost and minimal side effects. Agents that have been studied include:
Several uncontrolled trials and case series have reported the efficacy of pleurodesis,[
A prospective, randomized study of video-assisted thoracoscopic pleurodesis with talc versus doxycycline in 33 patients with malignant pleural effusion suggested that talc provides superior short-term and long-term results.[
Surgical treatment
For rare patients, standard management of the malignant effusion is unsuccessful and aggressive treatment remains appropriate. Pleuroperitoneal shunting can be considered for these patients. This procedure involves implantation of a shunt with one-way valves that allow the transfer of fluid from the pleural space to the peritoneal space, in which the fluid creates less hazard and is more easily removed. Another option is surgical pleurectomy, but this procedure requires general anesthesia. The risks of significant acute and chronic pain as well as other morbidity approaches 20% to 25%, and the risk of 1-month mortality is 5% to 10%.[
Current Clinical Trials
Use our
References:
Malignant pericardial effusions occur in up to 21% of cancer patients [
Symptomatic pericardial effusions are often a preterminal event; however, significant symptom palliation can be achieved by prompt diagnosis and management.
Of patients with malignant pericardial effusions, 50% will have concomitant pleural effusions, and one-third will have pulmonary parenchymal disease.[
One-third of patients with pericardial metastases will eventually die from pericardial tamponade.[
Incidence and Prevalence
Malignant pericardial effusion occurs in up to 21% of autopsy cases in patients with common malignancies.[
A retrospective review of 23,592 effusions over a 24-year period revealed 65 malignant effusions (17%) out of 375 pericardial effusions. Lung cancer was the most common cancer found among the malignant pericardial effusions in males, and breast cancer was the most common in females. In 43% of cases, pericardial effusion was the first detected sign of cancer. Of patients diagnosed with malignant pericardial effusions, 86% died within 1 year of diagnosis, with nearly one-third dying within the first month.[
In a study of 31 patients with both cancer and pericardial effusions, malignant pericardial effusion accounted for 58% of the effusions, 32% were caused by benign idiopathic pericarditis, and radiation pericarditis caused 10% of cases.[
Pathophysiology
Malignant involvement of the pericardium is the most common reason for development of pericardial effusions, which result from blockage of venous and lymphatic circulation of pericardial fluid. Such blockage may be caused by primary malignancy of the pericardium, as with pericardial mesothelioma, or by tumors arising in the myocardium, including angiosarcoma, rhabdomyosarcoma, and malignant fibrous histiocytosis. Malignancies can also involve the pericardium through direct extension from carcinomas of the lung or esophagus, thymoma, or lymphoma.[
Primary tumors of the pleura or pericardium have been termed primary intrathoracic malignant effusions.[
Nonmalignant causes of pericardial effusion include:[
AIDS may also cause pericardial effusion with pericarditis.[
Pericardial tamponade results from progressive fluid accumulation in the pericardial sac, causing the following:[
Hemodynamic compromise occurs when the normal amount of pericardial fluid (approximately 15–50 cc) increases to 200 cc to 1,800 cc.[
Dyspnea occurs in 93% of patients with pericardial effusions.[
Other symptoms of pericardial effusion include:
Signs of effusion include the following:
Pericardial friction rubs and fever are more commonly associated with nonmalignant causes of pericardial effusions than with malignant etiologies.[
Signs of pericardial tamponade include:
However, some patients may develop tamponade without this clinical pattern.[
Diagnosis
A chest x-ray may show widening of the cardiac silhouette [
Transthoracic echocardiography using apical, subxiphoid, and parasternal views can evaluate the presence, quantity, and quality of suspected pericardial effusions as well as associated pericardial masses and inflammation. Moderate effusions on echocardiography show an echo-free space of 10 mm to 20 mm during diastole in M-mode or 2-dimensional echocardiography, whereas severe effusions have an echo-free space exceeding 20 mm.[
Echocardiography in pericardial effusion with tamponade shows right atrial or right ventricular compression, or left atrial compression, decreased left ventricular dimension, and absence of collapse of the inferior vena cava on deep inspiration.[
The most definitive test for the diagnosis of cardiac tamponade is equalization of diastolic pressures between all cardiac chambers on right-heart cardiac catheterization.[
Electrocardiograms in patients with pericardial effusions typically show diminished QRS amplitude in all leads. A classic but uncommonly seen finding in large effusions with pericardial tamponade is variation in the amplitude of the P wave and QRS complex in successive beats on EKG, referred to as electrical alternans. This finding results from movement of the heart within the pericardial sac.[
Pericardial fluid cytology has an accuracy of 80% to 90% in diagnosing malignant pericardial effusion.[
Pericardial biopsy may increase the sensitivity of diagnosing pericardial effusions of malignant origin. However, because pericardial effusions usually occur in advanced disease and portend a shorter survival than do other sites of metastatic involvement, the relief of symptoms rather than diagnosis should be the overriding factor in determining the extent of the evaluation and the course of treatment. Two studies failed to show a difference in survival in cancer patients with pericardial effusion dependent on the results of fluid cytology.[
In a study of patients with stage I esophageal cancer who underwent radiation and chemotherapy, risk factors for developing pericardial effusion included advanced age, higher pericardial volume 30 (≥41.6 percentage of cardiac volume receiving more than 30 Gy), high body mass index, and diabetes mellitus.[
Treatment
No large controlled, randomized, prospective clinical trials demonstrate the optimal management of malignant pericardial effusions or tamponade. Treatment should therefore be individualized to maximize symptom relief with minimal impact on quality of life. Treatment options include the following:[
Considerations in the choice of therapeutic option should include:[
Large, symptomatic, malignant pericardial effusions are managed by draining the fluid, unless the goals of therapy dictate a less invasive, conservative approach with concomitant shorter survival that should be balanced against quality-of-life concerns. If treatment is indicated for management of tamponade, percutaneous subxiphoid pericardiocentesis is the treatment of choice in the acute setting. Echocardiography is recommended for catheter guidance.[
Recurrent pericardial effusion occurs in 21% [
Prolonged catheter drainage can be effective in preventing fluid reaccumulation; however, the mechanism is unclear. One series had a reported recurrence in 30% of patients at a median time of 39 days. In another series, the reported recurrence rate of the pericardial effusion was 13% by 1 year of follow-up.[
The prolonged catheter drainage could be left in for several days.[
The most effective sclerosing agent for malignant pericardial effusions had been tetracycline, with success rates of up to 80%;[
Most cases may require three or more treatments to achieve adequate sclerosis.[
A retrospective comparison of pericardiocentesis with sclerotherapy to open surgical drainage among 60 patients showed similar rates for treatment complications, incidence of recurrent effusion, and survival following treatment in both treatment groups.[
Other studies have reported mortality, recurrence, and survival rates for sclerosis that are similar to or slightly lower than those for subxiphoid window or video-assisted thoracoscopy.[
Transcutaneous balloon pericardiostomy is another technique that is less invasive than open surgical approaches, which include subxiphoid pericardial windows, thoracotomy with pericardiopleural window formation,[
Video pericardioscopy has a diagnostic sensitivity of 97% for detecting malignant effusions.[
Current Clinical Trials
Use our
References:
Overview
Superior vena cava syndrome (SVCS) is an array of symptoms caused by the impairment of blood flow through the superior vena cava (SVC) to the right atrium. Symptoms that prompt suspicion of this syndrome include the following:[
In rare instances, patients may complain of hoarseness, chest pain, dysphagia, and hemoptysis.
Physical signs that may be noted on presentation are the following:
Rarely, cyanosis, Horner syndrome, and a paralyzed vocal cord may also be present.[
SVCS is usually a sign of locally advanced bronchogenic carcinoma. Survival depends on the status of the patient's disease. When small cell bronchogenic carcinoma is treated with chemotherapy, the median survival times with or without SVCS are almost identical (42 weeks or 40 weeks, respectively). The 24-month survival rate is 9% in patients without SVCS and 3% in those with the syndrome. When the malignancy is treated with radiation therapy, 46% of patients who have non-small cell lung cancer experience relief of symptoms compared with 62% of patients who have small cell bronchogenic carcinoma. The 2-year survival rate of 5% is almost the same for both groups.[
Most non-Hodgkin lymphoma patients with SVCS respond to appropriate chemotherapy or to combined modality regimens.
Etiology and Physiology
Since SVCS was first described by William Hunter in 1757, the spectrum of underlying conditions associated with it has shifted from tuberculosis and syphilitic aneurysms of the ascending aorta to malignant disorders. Almost 95% of SVCS cases described in published modern series result from cancer; the most common cause is small cell bronchogenic carcinoma, followed by squamous cell carcinoma of the lung, adenocarcinoma of the lung, non-Hodgkin lymphoma, and large cell carcinoma of the lung.[
Knowledge of the anatomy of the SVC and its relationship to the surrounding lymph nodes is essential to understanding the development of the syndrome. The SVC is formed by the junction of the left and right brachiocephalic veins in the mid third of the mediastinum. The SVC extends caudally for 6 to 8 cm, coursing anterior to the right mainstem bronchus and terminating in the superior right atrium, and extends anteriorly to the right mainstem bronchus. The SVC is joined posteriorly by the azygos vein as it loops over the right mainstem bronchus and lies posterior to and to the right of the ascending aorta. The mediastinal parietal pleura is lateral to the SVC, creating a confined space, and the SVC is adjacent to the right paratracheal, azygous, right hilar, and subcarinal lymph node groups. The vessel itself is thin-walled, and the blood flowing therein is under low pressure. Thus, when the nodes or ascending aorta enlarge, the SVC is compressed, blood flow slows, and complete occlusion may occur.
The severity of the syndrome depends on the rapidity of onset of the obstruction and its location. The more rapid the onset, the more severe the symptoms because the collateral veins do not have time to distend to accommodate an increased blood flow.[
One study suggested that the general recruitment of venous collaterals over time may lead to remission of the syndrome, although the SVC remains obstructed.[
Assessment and Diagnosis
Once SVCS is recognized, prompt clinical attention is important. For the following reasons, a diagnosis should be established before therapy is initiated:[
In the absence of tracheal obstruction, SVCS is unlikely to be a life-threatening oncologic emergency, and treatment prior to definitive diagnosis is not justified.
The initial evaluation of the patient should include a chest x-ray to look for mediastinal masses and associated findings, such as pleural effusion, lobar collapse, or cardiomegaly. Computed tomography (CT) scanning of the thorax yields the most useful diagnostic information and can define the anatomy of the involved mediastinal nodes. Venous patency and the presence of thrombi are assessed by using contrast and rapid scanning techniques.[
If bronchogenic carcinoma is suspected, a sputum specimen should be obtained. If the sputum specimen is negative, a biopsy specimen should be taken from the most accessible site that is clinically involved with disease. The biopsy approach depends on the working diagnosis, the location of the tumor, the physiologic status of the patient, and the expertise available at the facility. It may include:[
The biopsy findings will help the clinician plan appropriate treatment.
Treatment Options
The treatment of SVCS depends on the following:
Radiation therapy or chemotherapy should be withheld until the etiology of the obstruction is clear. The treatments discussed here focus on SVC obstruction caused by a malignant tumor. Because the treatment of malignant obstruction may depend on tumor histology, a histologic diagnosis—if not made earlier—should be made before treatment is initiated. Unless there is airway obstruction or cerebral edema, there appears to be no detriment in outcome when treatment is delayed for the assessment.[
Medical management
A patient with sufficient collateral blood flow and minimal symptoms may not need treatment. If the lesion is above the azygous vein or if the onset of SVC occlusion is slow enough to allow sufficient collateral circulation, the symptoms and signs may stabilize, and the patient may be comfortable enough to forego further therapy. Short-term palliation of a symptomatic patient who does not want aggressive treatment may be achieved by elevating the head and using corticosteroids and diuresis. There are no definitive studies that prove the effectiveness of steroids, although steroids are potentially useful to treat respiratory compromise. Diuretics may give symptomatic relief of edema but can ultimately cause systemic complications, such as dehydration.[
Radiation therapy
If the obstruction of the SVC is caused by a tumor that is not sensitive to chemotherapy, radiation therapy should be given. Treatment with larger fractions of radiation is thought to be beneficial in developing a rapid response. One study shows, however, that there is no obvious need for large radiation fraction sizes for the first few radiation treatments as was previously believed.[
Chemotherapy
Chemotherapy is the treatment of choice for sensitive tumors such as lymphoma or small cell lung cancer. SVCS does not appear to be an independent prognostic factor, and its presence should not change the treatment approach. Rapid initiation of chemotherapy can result in complete and partial response rates of the SVCS of more than 80% in small cell lung cancer patients.[
Thrombolysis
It has been suggested that SVCS arises when a thrombus forms in a partially occluded vein. In patients with a documented thrombus in the SVC, treatment may include thrombectomy, with or without tissue plasminogen activator or other thrombolytic agents such as streptokinase or urokinase.[
Stent placement
There have been numerous small studies using an intravascular expandable stent to reopen the occluded SVC; however, no prospectively designed comparative studies have been published.[
Surgery
Surgical bypass of an obstructed SVC is more appropriate for patients with a benign obstruction than with a malignant obstruction,[
Psychosocial Considerations
Patients and family members are often frightened and anxious because of the symptoms produced by SVCS, particularly swelling, dysphagia, coughing, and hoarseness. Information about the cause of the symptoms and about short-term measures for palliation is needed by patients and family members, especially during the diagnostic period. When aggressive treatment is declined because of the terminal nature of the underlying disease, symptom management approaches may need to be taught to patients and family members.
Because most adult patients who develop SVCS have lung cancer, the treatment and psychologic support approaches that are developed for SVCS should take into account the patient's prognosis and psychologic condition, goals of care, and other symptoms caused by the malignancy.[
Pediatric Considerations
As described in other sections of this summary, SVCS refers to the symptoms associated with the compression or obstruction of the SVC; the compression of the trachea is termed superior mediastinal syndrome (SMS). Because SMS and the resulting respiratory compromise frequently occur in children with SVCS, the two syndromes have become almost synonymous in pediatric practice.[
The most common symptoms of SVCS in children are similar to those in adults and include:[
Symptoms that are less common but more serious are the following:
SVCS is rare in children and appears at presentation in 12% of pediatric patients with malignant mediastinal tumors.[
A physical examination, chest radiograph, and the medical history of the patient are usually sufficient to establish a diagnosis of SVCS. If lymphoma or other malignant disease is suspected, it is desirable to obtain a tissue sample for diagnosis. However, the procedure to obtain the specimen may involve significant risk and may not be clinically feasible. Children with SVCS have a poor tolerance for the necessary general anesthesia because the accompanying cardiovascular and pulmonary changes aggravate the SVCS, often making intubation impossible. Also, extubation may be difficult or impossible, thus requiring prolonged airway provision (intubation). A CT scan of the chest to determine tracheal size, upright and supine echocardiography, and a flow volume loop may help evaluate anesthetic risk. Because anesthesia use is a serious risk, the diagnosis should be made with the least invasive means possible.[
When a malignant mass is the cause of the SVCS, the situation may be a medical emergency with no opportunity to establish a tissue diagnosis. In these cases, the most appropriate course may be to initiate empiric therapy prior to biopsy. The traditional empiric therapy is irradiation, with the daily dose governed by the presumed radiosensitivity of the tumor. After irradiation, respiratory deterioration from the apparent tracheal swelling may occur because of the inability of narrow lumens in children to accommodate edema and because of the greater degree of edema at onset, which is the result of the rapid speed at which tumors grow in children. In these situations, a course of prednisone at 10 mg/m2 of body surface area 4 times per day may be necessary.[
In addition to radiation, empiric therapy of SVCS has included chemotherapeutic agents incorporating steroids, cyclophosphamide, or both in combination with an anthracycline and vincristine.[
If surgery becomes necessary, it should be performed with the patient in the semi-Fowler's position, allowing the surgeon the ability to rapidly change the patient's position to lateral or prone. Cardiopulmonary bypass facilities and a rigid bronchoscope should be available in a standby capacity.[
References:
The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.
Dyspnea in Patients With Advanced Cancer
Added text about a randomized controlled trial that prospectively evaluated dexamethasone versus a placebo in ambulatory patients with dyspnea. A clinically meaningful improvement in dyspnea was seen in both groups, leading the authors to conclude that high-dose dexamethasone should not be given routinely to alleviate cancer-related dyspnea (cited Hui et al. as reference 45 and level of evidence I).
This summary is written and maintained by the
Purpose of This Summary
This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the pathophysiology and treatment of cardiopulmonary syndromes, including dyspnea, malignant pleural effusion, malignant pericardial effusion, and superior vena cava syndrome. It is intended as a resource to inform and assist clinicians in the care of their patients. It does not provide formal guidelines or recommendations for making health care decisions.
Reviewers and Updates
This summary is reviewed regularly and updated as necessary by the
Board members review recently published articles each month to determine whether an article should:
Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.
The lead reviewer for Cardiopulmonary Syndromes is:
Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website's
Levels of Evidence
Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Supportive and Palliative Care Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.
Permission to Use This Summary
PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as "NCI's PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary]."
The preferred citation for this PDQ summary is:
PDQ® Supportive and Palliative Care Editorial Board. PDQ Cardiopulmonary Syndromes. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at:
Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in
Disclaimer
The information in these summaries should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the
Contact Us
More information about contacting us or receiving help with the Cancer.gov website can be found on our
Last Revised: 2023-02-21
This information does not replace the advice of a doctor. Ignite Healthwise, LLC, disclaims any warranty or liability for your use of this information. Your use of this information means that you agree to the
Healthwise, Healthwise for every health decision, and the Healthwise logo are trademarks of Ignite Healthwise, LLC.
Individual and family medical and dental insurance plans are insured by Cigna Health and Life Insurance Company (CHLIC), Cigna HealthCare of Arizona, Inc., Cigna HealthCare of Illinois, Inc., Cigna HealthCare of Georgia, Inc., Cigna HealthCare of North Carolina, Inc., Cigna HealthCare of South Carolina, Inc., and Cigna HealthCare of Texas, Inc. Group health insurance and health benefit plans are insured or administered by CHLIC, Connecticut General Life Insurance Company (CGLIC), or their affiliates (see
All insurance policies and group benefit plans contain exclusions and limitations. For availability, costs and complete details of coverage, contact a licensed agent or Cigna sales representative. This website is not intended for residents of New Mexico.