Learn about the medical, dental, pharmacy, behavioral, and voluntary benefits your employer may offer.
APL occurs in about 7% of children with acute myeloid leukemia (AML).[
When these unique features of APL are discovered at diagnosis, it is important to initiate proper supportive care measures to avoid coagulopathic complications during the first few days of therapy. It is also critical to institute an induction regimen specific to the treatment of APL. This regimen minimizes the risk of coagulopathic complications and provides a much improved long-term relapse-free survival and overall survival, compared with outcomes for patients with the other forms of AML.[
References:
Clinically, acute promyelocytic leukemia (APL) is characterized by severe coagulopathy that is often present at the time of diagnosis.[
Coagulopathy and bleeding complications increase the risk of early death during induction therapy (particularly with cytotoxic agents used alone). Because of these complications, mortality was once more common in patients with APL than in patients with other French-American-British (FAB) or World Health Organization (WHO) AML types.[
Patients at greatest risk of coagulopathic complications are those presenting with high white blood cell (WBC) counts, decreased platelet count, abnormal coagulation studies (hypofibrinogenemia, prothrombin time), high body mass index, molecular variants of APL, and the presence of FLT3 internal tandem duplication (ITD) variants.[
Scoring systems using clinical characteristics and laboratory values can help predict the risk of developing severe or lethal coagulopathy, as demonstrated in studies of both adult and pediatric patients.[
Because tretinoin has been shown to ameliorate bleeding risk for patients with APL, tretinoin therapy is initiated as soon as APL is suspected on the basis of morphological and clinical presentation.[
A multicooperative group analysis of children with APL who were treated with tretinoin and chemotherapy reported the following:[
Tretinoin is administered early to address this emergent need, but participation in other AML clinical trials is not precluded should the diagnosis of APL prove to be incorrect. Additionally, initiation of supportive measures such as replacement transfusions to correct coagulopathy is critical during these initial days of diagnosis and therapy.
References:
RARA Fusion Proteins
The characteristic chromosomal abnormality associated with acute promyelocytic leukemia (APL) is t(15;17)(q22;q21). This translocation involves a breakpoint that includes the retinoic acid receptor and leads to production of the PML::RARA fusion protein.[
Patients with a suspected diagnosis of APL can have their diagnosis confirmed by detection of the PML::RARA fusion protein through fluorescence in situ hybridization (FISH), reverse transcriptase–polymerase chain reaction (RT-PCR), or conventional cytogenetics. Quantitative RT-PCR allows identification of the three common transcript variants and is used for monitoring response on treatment and early detection of molecular relapse.[
Uncommon molecular variants of APL produce fusion proteins that join distinctive gene partners (e.g., PLZF, NPM, STAT5B, and NuMA) to RARA.[
FLT3Variants
FLT3 variants (either internal tandem duplication or tyrosine kinase domain variants) are observed in 40% to 50% of APL cases. The presence of FLT3 variants is correlated with higher white blood cell counts and the microgranular variant (M3v) subtype.[
References:
Childhood acute myeloid leukemia and other myeloid malignancies are classified according to the 2022 World Health Organization Classification system. For more information, see the Classification of Pediatric Myeloid Malignancies section in Childhood Acute Myeloid Leukemia Treatment.
White Blood Cell (WBC) Count
The prognostic significance of WBC count is used to define high-risk and low-risk patient populations and to assign induction treatment. High-risk patients are defined by a WBC count of 10 × 109 /L or greater.[
APL in children is generally similar to APL in adults, although children have a higher incidence of hyperleukocytosis (defined as a WBC count higher than 10 × 109 /L) and a higher incidence of the microgranular morphological subtype.[
In the Children's Oncology Group (COG) AAML0631 (NCT00866918) trial, which included treatment with chemotherapy, tretinoin, and arsenic trioxide, patients were stratified on the basis of WBC count to standard risk or high risk. Risk classification primarily defined early death risk rather than relapse risk (standard risk, 0 of 66 patients vs. high risk, 4 of 35 patients).[
Minimal Residual Disease (MRD) and Molecular Remission
For APL, MRD detection at the end of induction therapy lacks prognostic significance, likely related to the delayed clearance of differentiating leukemic cells destined to eventually die.[
References:
CNS involvement at the time of diagnosis is not ascertained in most patients with acute promyelocytic leukemia (APL) because of the presence of disseminated intravascular coagulation. The Children's Oncology Group (COG) AAML0631 (NCT00866918) trial identified 28 patients out of 101 enrolled children who had cerebrospinal fluid (CSF) exams at diagnosis. In 7 of these children, blasts were identified in atraumatic taps.[
Overall, CNS relapse is uncommon for patients with APL, particularly for those with white blood cell (WBC) counts of less than 10 × 109 /L.[
Arsenic trioxide is an agent known to have excellent CNS penetration. Because patients with APL receive arsenic trioxide and there is a low prevalence of CNS relapses, CSF exams are not necessary at diagnosis. In addition, the use of intrathecal chemotherapy prophylaxis is not required unless CNS hemorrhage occurs. Two COG trials revealed similar low incidences of CNS relapses.
References:
Cancer in children and adolescents is rare, although the overall incidence has been slowly increasing since 1975.[
For specific information about supportive care for children and adolescents with cancer, see the summaries on
The American Academy of Pediatrics has outlined guidelines for pediatric cancer centers and their role in the treatment of children and adolescents with cancer.[
References:
Modern treatment programs for acute promyelocytic leukemia (APL) are based on the sensitivity of leukemia cells to the differentiation-inducing and apoptotic effects of tretinoin and arsenic trioxide. APL therapy first diverged from the therapy of other non-APL subtypes of acute myeloid leukemia (AML) with the addition of tretinoin to chemotherapy. With the incorporation of arsenic trioxide into modern treatment regimens, the use of traditional chemotherapy in adults and children is restricted to only the induction phase for high-risk patients.[
Treatment options for children with APL may include the following:
Arsenic Trioxide and Tretinoin, With or Without Chemotherapy
Given the very high level of activity with the combination of arsenic trioxide and tretinoin for adults with APL [
Induction therapy for patients with standard-risk APL includes repeated cycles of tretinoin and arsenic trioxide alone. Patients with high-risk APL receive treatment similar to that for patients with standard-risk disease, but they also receive short courses of chemotherapy during induction therapy.[
Almost all children with APL who were treated with tretinoin, arsenic trioxide, and modern supportive care achieved CR in the absence of coagulopathy-related mortality.[
Results from the completed cooperative group trial (Children's Oncology Group [COG] AAML1331 [NCT02339740]) verified the benefit of treatment with tretinoin and arsenic trioxide for children with newly diagnosed APL,[
Arsenic trioxide, a proapoptotic and differentiation agent via binding to and the degradation of the PML::RARA fusion oncoprotein, is the most active agent in the treatment of APL. While initially used in patients with relapsed APL, it is now incorporated into the treatment of newly diagnosed patients. Data supporting the use of arsenic trioxide initially came from trials that included adult patients only, but its efficacy has now been seen in trials that included pediatric patients.
Based on the adult and pediatric experiences, consolidation therapy may include repeated cycles of tretinoin and arsenic trioxide without additional chemotherapy.[
Based on data from adult trials and the COG AAML1331 (NCT02339740) trial, maintenance therapy is likely unnecessary for patients with APL who are treated with tretinoin and arsenic trioxide.[
Before this approach was discovered, chemotherapy was used in all or most phases of therapy including induction, consolidation, and maintenance for pediatric trials like AAML0631 (NCT00866918). The regimens that use chemotherapy are now primarily of historical interest. They can also be used as a reference in refractory cases because of the findings from randomized clinical trials that compared regimens with the combination of tretinoin and arsenic trioxide with or without chemotherapy.
Evidence (arsenic trioxide and tretinoin, with or without chemotherapy):
Standard-risk patients received tretinoin plus arsenic trioxide on days 1 to 28, with the possibility of continuing treatment up to day 70 to achieve a hematologic CR. High-risk patients received the same induction therapy schedule as standard-risk patients, with the addition of idarubicin on induction days 1, 3, 5, and 7. High-risk patients also received daily dexamethasone as a prophylactic treatment to prevent differentiation syndrome on days 1 to 14. All patients received the same consolidation therapy, which consisted of tretinoin on days 1 to 14 and days 29 to 42. Patients were also given arsenic trioxide 5 days each week for 4 consecutive weeks in every 8-week consolidation cycle for four cycles, although the fourth consolidation therapy cycle concluded on day 28. There was no maintenance therapy phase.[
The AAML1331 and AAML0631 trials were compared and the following was reported:
In summary, survival rates for children with APL exceeding 90% are achievable using treatment programs that prescribe the rapid initiation of tretinoin with appropriate supportive care measures and combine arsenic trioxide with tretinoin for induction and consolidation therapy.[
Treatment Options Under Clinical Evaluation
Information about National Cancer Institute (NCI)–supported clinical trials can be found on the
Complications Unique to APL Therapy
In addition to the previously mentioned universal presence of coagulopathy in patients newly diagnosed with APL (further described below), several other unique complications occur in patients with APL as a result of treatment. The clinician should be aware of these complications. These include two tretinoin-related conditions, pseudotumor cerebri and differentiation syndrome (also called retinoic acid syndrome), and an arsenic trioxide–related complication, QT interval prolongation.
The incidence of pseudotumor cerebri has been reported to be as low as 1.7% with very strict definitions of the complication and as high as 6% to 16% in pediatric trials.[
When a diagnosis of pseudotumor cerebri is suspected, tretinoin is withheld until symptoms abate and then is slowly escalated to full dose as tolerated.[
Since differentiation syndrome occurs more often in high-risk patients, dexamethasone is given with tretinoin and/or arsenic trioxide to prevent this complication.[
Patients with standard-risk APL who are treated during induction with tretinoin and arsenic trioxide alone, without other cytotoxic chemotherapy, have a risk of hyperleukocytosis (WBC count >10 × 109 /L). The differentiating effect of tretinoin and arsenic trioxide can cause a rapid and significant rise in the WBC count after initiation of therapy. While hyperleukocytosis is a risk factor for developing differentiation syndrome, it may occur without developing the signs or symptoms of differentiation syndrome. In the COG AAML1331 trial, 32 of 98 patients with standard-risk APL developed hyperleukocytosis. This was managed with the initiation of hydroxyurea for cytoreduction and prophylaxis with dexamethasone to prevent differentiation syndrome. Patients with high-risk APL did not require hydroxyurea because they received idarubicin doses in early induction, which were effective for cytoreduction.[
Minimal Residual Disease Monitoring
The current induction and consolidation therapies result in molecular remission in most patients, as measured by reverse transcriptase (RT)-PCR for the PML::RARA fusion protein. Only 1% or less of patients show molecular evidence of disease at the end of consolidation therapy.[
Patients with persistent or relapsing disease on the basis of PML::RARA fusion protein RT-PCR measurement may benefit from intervention with relapse therapies.[
References:
Historically, 10% to 20% of patients with acute promyelocytic leukemia (APL) relapsed. However, current studies that incorporated arsenic trioxide therapy showed a cumulative incidence of relapse of less than 5%.[
In patients with APL who initially received chemotherapy-based treatments, the duration of first remission was prognostic. Patients who relapsed within 12 to 18 months of initial diagnosis had a worse outcome.[
An important issue in children who relapsed is the exposure to anthracyclines received in previous trials, which ranged from 400 mg/m2 to 750 mg/m2.[
Treatment options for children with recurrent APL may include the following:
Arsenic Trioxide With or Without Tretinoin
For children with recurrent APL, the use of arsenic trioxide as a single agent or in regimens including tretinoin should be considered, depending on the therapy given during first remission. Arsenic trioxide is an active agent in adult patients with recurrent APL, with approximately 85% to 94% of patients achieving remission after treatment with this agent.[
Arsenic trioxide is capable of inducing remissions in patients who relapse after having received arsenic trioxide with or without other agents during initial therapy.[
Because arsenic trioxide causes QT-interval prolongation that can lead to life-threatening arrhythmias,[
Gemtuzumab Ozogamicin
In one trial, the use of gemtuzumab ozogamicin, an anti-CD33/calicheamicin antibody-drug conjugate, as a single agent resulted in a molecular remission rate of 91% (9 of 11 patients) after two doses and a molecular remission rate of 100% (13 of 13 patients) after three doses. These results demonstrate excellent activity of this agent in patients with relapsed APL.[
HSCT
Retrospective pediatric studies have reported 5-year event-free survival (EFS) rates after either autologous or allogeneic transplant approaches to be similar, at approximately 70%.[
Evidence (autologous HSCT):
Such data support the use of autologous transplant in patients who are MRD negative in second complete remission and have MRD-negative stem cell collections.
Because of the rarity of APL in children and the favorable outcome for this disease, clinical trials in relapsed APL to compare treatment approaches are likely not feasible. However, an international expert panel provided recommendations for the treatment of relapsed APL on the basis of the reported pediatric and adult experiences.[
References:
The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.
Editorial changes were made to this summary.
This summary is written and maintained by the
Purpose of This Summary
This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the treatment of childhood acute promyelocytic leukemia. It is intended as a resource to inform and assist clinicians in the care of their patients. It does not provide formal guidelines or recommendations for making health care decisions.
Reviewers and Updates
This summary is reviewed regularly and updated as necessary by the
Board members review recently published articles each month to determine whether an article should:
Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.
The lead reviewers for Childhood Acute Promyelocytic Leukemia Treatment are:
Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website's
Levels of Evidence
Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Pediatric Treatment Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.
Permission to Use This Summary
PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as "NCI's PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary]."
The preferred citation for this PDQ summary is:
PDQ® Pediatric Treatment Editorial Board. PDQ Childhood Acute Promyelocytic Leukemia Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at:
Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in
Disclaimer
Based on the strength of the available evidence, treatment options may be described as either "standard" or "under clinical evaluation." These classifications should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the
Contact Us
More information about contacting us or receiving help with the Cancer.gov website can be found on our
Last Revised: 2024-06-14
This information does not replace the advice of a doctor. Ignite Healthwise, LLC, disclaims any warranty or liability for your use of this information. Your use of this information means that you agree to the
Healthwise, Healthwise for every health decision, and the Healthwise logo are trademarks of Ignite Healthwise, LLC.
Individual and family medical and dental insurance plans are insured by Cigna Health and Life Insurance Company (CHLIC), Cigna HealthCare of Arizona, Inc., Cigna HealthCare of Illinois, Inc., Cigna HealthCare of Georgia, Inc., Cigna HealthCare of North Carolina, Inc., Cigna HealthCare of South Carolina, Inc., and Cigna HealthCare of Texas, Inc. Group health insurance and health benefit plans are insured or administered by CHLIC, Connecticut General Life Insurance Company (CGLIC), or their affiliates (see
All insurance policies and group benefit plans contain exclusions and limitations. For availability, costs and complete details of coverage, contact a licensed agent or Cigna sales representative. This website is not intended for residents of New Mexico.