Learn about the medical, dental, pharmacy, behavioral, and voluntary benefits your employer may offer.
Chronic myeloid leukemia (CML) results from the BCR::ABL translocation. CML is primarily an adult disease but represents the most common of the chronic myeloproliferative disorders in children. CML accounts for approximately 13% to 20% of all childhood myeloid leukemias and 2% of all childhood leukemias.[
CML is a clonal panmyelopathy that involves all hematopoietic cell lineages. CML is characterized by a marked leukocytosis and is often associated with thrombocytosis, sometimes with abnormal platelet function. Bone marrow aspiration or biopsy reveals hypercellularity with relatively normal granulocytic maturation and no significant increase in leukemic blasts. Although reduced leukocyte alkaline phosphatase activity is seen in patients with CML, this is not a specific finding.
CML historically was divided into the following three clinical phases:
The 5th edition of the WHO classification now divides clinical presentation into either chronic phase or blast phase and eliminates the accelerated phase. This change was partially due to the impact of TKIs on the disease course, which has reduced the proportion of patients who develop progression. Also, the 5th edition of the WHO classification identifies certain chronic phase characteristics as high risk for disease progression and TKI resistance.[
References:
Genomics of CML
The cytogenetic abnormality required for diagnosis of CML is the Philadelphia chromosome (Ph), which represents a translocation of chromosomes 9 and 22 (t(9;22)), resulting in a BCR::ABL1 fusion protein.[
Additional chromosomal abnormalities have been found in studies of adults with CML in the TKI era. These studies have illustrated a number of adverse prognostic variants, including those identified as high risk in the chronic phase.[
References:
Cancer in children and adolescents is rare, although the overall incidence has been slowly increasing since 1975.[
For specific information about supportive care for children and adolescents with cancer, see the summaries on
The American Academy of Pediatrics has outlined guidelines for pediatric cancer centers and their role in the treatment of children and adolescents with cancer.[
References:
Before the tyrosine kinase inhibitor (TKI) era, allogeneic hematopoietic stem cell transplant (HSCT) was the primary treatment for children with chronic myeloid leukemia (CML). Published reports from this period described survival rates of 70% to 80% when an HLA–matched-family donor (MFD) was used in the treatment of children in early chronic phase. Lower survival rates were reported when HLA–matched-unrelated donors were used.[
Relapse rates were low (less than 20%) when transplant was performed in the chronic phase.[
Compared with transplant in the chronic phase, transplant in the accelerated phase or blast crisis and in the second chronic phase resulted in significantly reduced survival.[
The introduction of the TKI imatinib as a therapeutic drug targeted at inhibiting the BCR::ABL1 fusion kinase revolutionized the treatment of patients with CML, for both children and adults.[
References:
Treatment options for children with chronic myeloid leukemia (CML) may include the following:
TKI Therapy
Imatinib
Imatinib has shown a high level of activity in children with CML that is comparable with the activity observed in adults.[
Doses of imatinib used in phase II trials for children with CML have ranged from 260 mg/m2 to 340 mg/m2, which provide comparable drug exposures as the adult flat-doses of 400 mg to 600 mg.[
Evidence (imatinib in children):
Early molecular responses, such as the polymerase chain reaction (PCR)–based minimal residual disease (MRD) measurement at 3 months of therapy showing 10% BCR::ABL1 fusion transcripts, have been reported to be associated with improved PFS, similar to early molecular response data in adults.[
The monitoring parameters described for adults with CML are reasonable to use in children. Monitoring occurs every 3 months until MMR is achieved and confirmed every 3 to 6 months thereafter. For more information, see Chronic Myeloid Leukemia Treatment.
Imatinib is generally well tolerated in children. Adverse effects are generally mild to moderate and reversible with treatment discontinuation or dose reduction.[
Dasatinib
Dasatinib is a TKI that is approved by the U.S. Food and Drug Administration (FDA) for the treatment of children with CML.
Evidence (dasatinib in children):
Nilotinib
Nilotinib is a TKI that is approved by the FDA for the treatment of children with CML.
Evidence (nilotinib in children):
The FDA approved nilotinib in March 2018 for the treatment of children with CML based on two sponsored trials.[
Data from both studies were combined for a pooled-data analysis of 69 patients, which included 25 patients with newly diagnosed CML and 44 patients with resistant or intolerant CML. Both studies used a dose of 230 mg/m2 given twice daily (rounded to the nearest 50 mg; maximum single dose, 400 mg).[
Other TKIs
Most data on the use of TKIs for CML is from adult clinical trials. A safe pediatric dose has not yet been established for ponatinib.
Bosutinib is a TKI that targets the BCR::ABL1 gene fusion. The FDA approved bosutinib for the treatment of all phases of CML in adults who show intolerance to or whose disease shows resistance to previous therapy with another TKI.
The pediatric recommended phase II dose of bosutinib was determined in a phase I study that included 30 screened children, 28 of whom received treatment. For children previously resistant or intolerant to other TKIs, the dose was 400 mg/m2 with food once daily (maximum dose, 600 mg). For children with newly diagnosed CML, the dose was 300 mg/m2 with food once daily (maximum dose, 500 mg).[
Ponatinib is a BCR::ABL1 fusion transcript inhibitor that is effective against the T315I variant.[
Discontinuation of TKI Therapy
Discontinuation of TKI treatment is an accepted strategy for adults with CML who meet strict criteria related to their duration of treatment and response to treatment. Guidelines for discontinuation of TKIs have been developed by both the ELN and the U.S.-based National Comprehensive Cancer Network (NCCN).[
These guidelines specify close monitoring of BCR::ABL1 transcript levels after TKI discontinuation. Loss of MMR (or MR3) (BCR::ABL1 transcript level ≤0.1% IS) is generally used as the trigger for reinitiation of TKI therapy.
Loss of MMR is most likely to occur within the first 6 months of TKI discontinuation. Loss of MMR occurs much less frequently more than 1 year after TKI discontinuation. A meta-analysis included 3,105 adult patients who initiated a first attempt at TKI discontinuation. The study found that the probability of molecular recurrence was 35% after 0 to 6 months, 8% after 6 to 12 months, 3% after 12 to 18 months, and 3% after 18 to 24 months.[
There are limited data regarding TKI discontinuation in children with CML. This limited experience is explained, in part, by the low incidence of CML in children. In addition, few children with CML who are treated with TKIs meet the criteria for TKI discontinuation. For example, among patients enrolled on the International Chronic Myeloid Leukemia Pediatric Study (I-CML-Ped [NCT01281735]), only 9% of children with CML who were treated with TKIs met the criteria for TKI discontinuation.[
TKI withdrawal syndrome is observed in approximately 20% to 30% of adults when TKI therapy is discontinued.[
Among the 18 children who stopped taking imatinib, 9 (50%) eventually resumed treatment.[
Treatment Options Under Clinical Evaluation
Information about National Cancer Institute (NCI)–supported clinical trials can be found on the
The following is an example of a national and/or institutional clinical trial that is currently being conducted:
References:
Treatment options for children with recurrent or refractory chronic myeloid leukemia (CML) may include the following:
Alternative TKI Therapy
In children who develop a hematologic or cytogenetic relapse during treatment with imatinib or who have an inadequate initial response to their initial TKI agents, determination of BCR::ABL1 kinase domain variant status should be considered to help guide subsequent therapy. Depending on the patient's variant status, alternative TKIs such as dasatinib, nilotinib, or bosutinib can be considered on the basis of the adult and pediatric experience with these agents.[
Evidence (dasatinib in children with resistant or intolerant CML):
Evidence (nilotinib in children with resistant or intolerant CML):
Dasatinib and nilotinib are active against many BCR::ABL1 variants that confer resistance to imatinib, although the agents are ineffective in patients with the T315I variant. In the presence of the T315I variant, which is resistant to all U.S. Food and Drug Administration (FDA)–approved TKIs, an allogeneic HSCT should be considered. Ponatinib, the BCR::ABL1 inhibitor effective against the T315I variant in adults, has not been prospectively studied in the pediatric population.
Allogeneic HSCT
The question of whether a pediatric patient with CML should receive an allogeneic HSCT when multiple TKIs are available remains unanswered. However, reports suggest that PFS does not improve when using HSCT, compared with the sustained use of imatinib.[
Treatment Options Under Clinical Evaluation
Information about National Cancer Institute (NCI)–supported clinical trials can be found on the
The following are examples of national and/or institutional clinical trials that are currently being conducted:
References:
The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.
Treatment of Childhood CML
Added text about the results of a phase I study in children that determined the recommended phase II dose of bosutinib (cited Brivio et al. as reference 17).
Treatment of Recurrent or Refractory Childhood CML
Added NCT03934372 as an open clinical trial available for pediatric patients with recurrent or refractory leukemias.
This summary is written and maintained by the
Purpose of This Summary
This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the treatment of childhood chronic myeloid leukemia. It is intended as a resource to inform and assist clinicians in the care of their patients. It does not provide formal guidelines or recommendations for making health care decisions.
Reviewers and Updates
This summary is reviewed regularly and updated as necessary by the
Board members review recently published articles each month to determine whether an article should:
Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.
The lead reviewers for Childhood Chronic Myeloid Leukemia Treatment are:
Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website's
Levels of Evidence
Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Pediatric Treatment Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.
Permission to Use This Summary
PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as "NCI's PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary]."
The preferred citation for this PDQ summary is:
PDQ® Pediatric Treatment Editorial Board. PDQ Childhood Chronic Myeloid Leukemia Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at:
Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in
Disclaimer
Based on the strength of the available evidence, treatment options may be described as either "standard" or "under clinical evaluation." These classifications should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the
Contact Us
More information about contacting us or receiving help with the Cancer.gov website can be found on our
Last Revised: 2024-06-14
This information does not replace the advice of a doctor. Ignite Healthwise, LLC, disclaims any warranty or liability for your use of this information. Your use of this information means that you agree to the
Healthwise, Healthwise for every health decision, and the Healthwise logo are trademarks of Ignite Healthwise, LLC.
Individual and family medical and dental insurance plans are insured by Cigna Health and Life Insurance Company (CHLIC), Cigna HealthCare of Arizona, Inc., Cigna HealthCare of Illinois, Inc., Cigna HealthCare of Georgia, Inc., Cigna HealthCare of North Carolina, Inc., Cigna HealthCare of South Carolina, Inc., and Cigna HealthCare of Texas, Inc. Group health insurance and health benefit plans are insured or administered by CHLIC, Connecticut General Life Insurance Company (CGLIC), or their affiliates (see
All insurance policies and group benefit plans contain exclusions and limitations. For availability, costs and complete details of coverage, contact a licensed agent or Cigna sales representative. This website is not intended for residents of New Mexico.