Learn about the medical, dental, pharmacy, behavioral, and voluntary benefits your employer may offer.
Epidemiology
Cancer of the hypopharynx is uncommon; approximately 2,500 new cases are diagnosed in the United States each year.[
Upper hypopharyngeal cancers appear to be associated more with heavy drinking and smoking, whereas the lower hypopharyngeal, or postcricoid, cancers are more often associated with nutritional deficiencies.[
Anatomy
Anatomically, the hypopharynx extends from the plane of the hyoid bone above to the plane of the inferior border of the cricoid cartilage below. The hypopharynx is composed of the following three parts and does not include the larynx:
Clinical Features
The lymphatic drainage from the pharynx is into the jugulodigastric, jugulo-omohyoid, upper and middle deep cervical, and retropharyngeal nodes. In the United States and Canada, 65% to 85% of hypopharyngeal carcinomas involve the pyriform sinuses, 10% to 20% involve the posterior pharyngeal wall, and 5% to 15% involve the postcricoid area.[
Almost all hypopharyngeal cancers are mucosal squamous cell carcinomas (SCCs).[
Clinically, cancers of the hypopharynx tend to be aggressive and demonstrate a natural history that is characterized by diffuse local spread, early metastasis, and a relatively high rate of distant spread. More than 50% of patients with hypopharyngeal cancer have clinically positive cervical nodes at the time of presentation. In 50% of these individuals, a neck mass is the presenting symptom.[
In a large retrospective study of patients with SCC of the larynx and hypopharynx, 87% of patients with pyriform sinus SCC were found to have stage III or stage IV disease; 82% of patients with SCC of the posterior pharyngeal wall were found to have stage III or stage IV disease.[
The treatment of hypopharyngeal cancer is controversial, in part because of its low incidence and the inherent difficulty in conducting adequately powered, prospective, randomized clinical studies.[
Prognosis and Survival
Chronic pulmonary and hepatic diseases related to the excessive use of tobacco and alcohol are found in patients with hypopharyngeal cancer. Recognition of these comorbidities is essential when planning appropriate treatment.[
Factors that contribute to an overall poor prognosis with hypopharyngeal SCC include:
In many patients, a poor prognosis is related to poor overall health.[
Risk Factors
In addition to the risk of delayed regional metastases, the risk of developing a second primary tumor in patients with tumors of the upper aerodigestive tract has been estimated to be 4% to 7% per year.[
Histopathology
SCC of the hypopharynx has not been associated with any specific chromosomal or genetic abnormalities;[
References:
Almost all hypopharyngeal cancers are epithelial in origin, predominantly squamous cell (i.e., epidermoid) carcinomas (SCCs), and may be preceded by various precancerous lesions.[
Nonepithelial tumors, including lymphomas, sarcomas, and melanomas, require separate consideration and are not included in the staging and treatment options discussed in this summary.[
Invasive SCCs are usually moderately or poorly differentiated and invariably stain positively for keratin.[
The term, leukoplakia, should be used only as a clinically descriptive term meaning that the observer sees a white patch that does not rub off, the significance of which depends on the histological findings.[
References:
The staging systems are all clinical staging and are based on the best possible estimate of the extent of disease before treatment. The assessment of the primary tumor is based on inspection and palpation, when possible, and by both indirect mirror examination and direct endoscopy. The tumor must be confirmed histologically, and any other pathological data obtained from a biopsy may be included. Additional radiographic studies may be included. As an adjunct to clinical examination, computed tomography and/or magnetic resonance imaging are needed for an accurate staging of laryngeal and hypopharyngeal carcinomas because both cross-sectional imaging modalities are known to reliably evaluate deep tumor infiltration.[
American Joint Committee on Cancer (AJCC) Stage Groupings and TNM Definitions
The AJCC has designated staging by TNM (tumor, node, metastasis) classification to define hypopharyngeal cancer.[
T Category | T Criteria |
---|---|
a Reprinted with permission from AJCC: Oropharynx (p16-) and Hypopharynx. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 123–35. | |
b Central compartment soft tissue includes prelaryngeal strap muscles and subcutaneous fat. | |
TX | Primary tumor cannot be assessed. |
Tis | Carcinomain situ. |
T1 | Tumor limited to one subsite of hypopharynx and/or ≤2 cm in greatest dimension. |
T2 | Tumor invades more than one subsite of hypopharynx or an adjacent site, or measures >2 cm but ≤4 cm in greatest dimension without fixation of hemilarynx. |
T3 | Tumor >4 cm in greatest dimension or with fixation of hemilarynx or extension to esophageal mucosa. |
T4 | Moderately advanced and very advanced local disease. |
‒T4a | Moderately advanced local disease. Tumor invades thyroid/cricoid cartilage, hyoid bone, thyroid gland, esophageal muscle, or central compartment soft tissue.b |
‒T4b | Very advanced local disease. Tumor invades prevertebral fascia, encases carotid artery, or involves mediastinal structures. |
N Category | Clinical N (cN) Criteria | Pathological N (pN) Criteria |
---|---|---|
ENE = extranodal extension. | ||
a Reprinted with permission from AJCC: Oropharynx (p16-) and Hypopharynx. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 123–35. | ||
Note: A designation of U or L may be used for any N category to indicate metastasis above the lower border of the cricoid (U) or below the lower border of the cricoid (L). Similarly, clinical and pathological ENE should be recorded as ENE(‒) or ENE(+). | ||
NX | Regional lymph nodes cannot be assessed. | Regional lymph nodes cannot be assessed. |
N0 | No regional lymph node metastasis. | No regional lymph node metastasis. |
N1 | Metastasis in a single ipsilateral lymph node, ≤3 cm in greatest dimension and ENE(‒). | Metastasis in a single ipsilateral lymph node, ≤3 cm in greatest dimension and ENE(‒). |
N2 | Metastasis in a single ipsilateral node >3 cm but ≤6 cm in greatest dimension and ENE(‒);or metastases in multiple ipsilateral lymph nodes, none >6 cm in greatest dimension and ENE(‒);or in bilateral or contralateral lymph nodes, none >6 cm in greatest dimension and ENE(‒). | Metastasis in a single ipsilateral lymph node, ≤3 cm in greatest dimension and ENE(+);or>3 cm but ≤6 cm in greatest dimension and ENE(‒);or metastases in multiple ipsilateral lymph nodes, none >6 cm in greatest dimension and ENE(‒);or in bilateral or contralateral lymph nodes, none >6 cm in greatest dimension and ENE(‒). |
‒N2a | Metastasis in a single ipsilateral node >3 cm but ≤6 cm in greatest dimension and ENE(‒). | Metastasis in single ipsilateral node ≤3 cm in greatest dimension and ENE(+);or a single ipsilateral node >3 cm but ≤6 cm in greatest dimension and ENE(‒). |
‒N2b | Metastases in multiple ipsilateral nodes, none >6 cm in greatest dimension and ENE(‒). | Metastases in multiple ipsilateral nodes, none >6 cm in greatest dimension and ENE(‒). |
‒N2c | Metastases in bilateral or contralateral lymph nodes, none >6 cm in greatest dimension and ENE(‒). | Metastases in bilateral or contralateral lymph nodes, none >6 cm in greatest dimension and ENE(‒). |
N3 | Metastasis in a lymph node >6 cm in greatest dimension and ENE(‒);or metastasis in any node(s) and clinically overt ENE(+). | Metastasis in a lymph node >6 cm in greatest dimension and ENE(‒);or metastasis in a single ipsilateral node >3 cm in greatest dimension and ENE(+);or multiple ipsilateral, contralateral, or bilateral nodes, any with ENE(+);or a single contralateral node of any size and ENE(+). |
‒N3a | Metastasis in a lymph node >6 cm in greatest dimension and ENE(‒). | Metastasis in a lymph node >6 cm in greatest dimension and ENE(‒). |
‒N3b | Metastasis in any node(s) and clinically overt ENE(+). | Metastasis in a single ipsilateral node >3 cm in greatest dimension and ENE(+);or multiple ipsilateral, contralateral, or bilateral nodes, any with ENE(+);or a single contralateral node of any size and ENE(+). |
M Category | M Criteria |
---|---|
a Reprinted with permission from AJCC: Oropharynx (p16-) and Hypopharynx. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 123–35. | |
M0 | No distant metastasis. |
M1 | Distant metastasis. |
Stage | TNM | Description |
---|---|---|
T = primary tumor; N = regional lymph node; M = distant metastasis. | ||
a Reprinted with permission from AJCC: Oropharynx (p16-) and Hypopharynx. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 123–35. | ||
0 | Tis, N0, M0 | Tis = Carcinomain situ. |
N0 = No regional lymph node metastasis. | ||
M0 = No distant metastasis. |
Stage | TNM | Description |
---|---|---|
T = primary tumor; N = regional lymph node; M = distant metastasis. | ||
a Reprinted with permission from AJCC: Oropharynx (p16-) and Hypopharynx. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 123–35. | ||
I | T1, N0, M0 | T1 = Tumor limited to one subsite of hypopharynx and/or ≤2 cm in greatest dimension. |
N0 = No regional lymph node metastasis. | ||
M0 = No distant metastasis. |
Stage | TNM | Description |
---|---|---|
T = primary tumor; N = regional lymph node; M = distant metastasis. | ||
a Reprinted with permission from AJCC: Oropharynx (p16-) and Hypopharynx. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 123–35. | ||
II | T2, N0, M0 | T2 = Tumor invades more than one subsite of hypopharynx or an adjacent site, or measures >2 cm but ≤4 cm in greatest dimension without fixation of hemilarynx. |
N0 = No regional lymph node metastasis. | ||
M0 = No distant metastasis. |
Stage | TNM | Description |
---|---|---|
T = primary tumor; N = regional lymph node; M = distant metastasis; ENE = extranodal extension. | ||
a Reprinted with permission from AJCC: Oropharynx (p16-) and Hypopharynx. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 123–35. | ||
III | T3, N0, M0 | T3 = Tumor >4 cm in greatest dimension or with fixation of hemilarynx or extension to esophageal mucosa. |
N0 = No regional lymph node metastasis. | ||
M0 = No distant metastasis. | ||
III | T1, T2, T3, N1, M0 | T1, T2, T3 = See Table |
N1 = Metastasis in a single ipsilateral lymph node, ≤3 cm in greatest dimension and ENE(‒). | ||
M0 = No distant metastasis. |
Stage | TNM | Description |
---|---|---|
T = primary tumor; N = regional lymph node; M = distant metastasis; ENE = extranodal extension. | ||
a Reprinted with permission from AJCC: Oropharynx (p16-) and Hypopharynx. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp 123–35. | ||
b Central compartment soft tissue includes prelaryngeal strap muscles and subcutaneous fat. | ||
IVA | T4a, N0, N1, M0 | T4a = Moderately advanced local disease. Tumor invades thyroid/cricoid cartilage, hyoid bone, thyroid gland, esophageal muscle, or central compartment soft tissue.b |
N0 = No regional lymph node metastasis. | ||
N1 = Metastasis in a single ipsilateral lymph node, ≤3 cm in greatest dimension and ENE(‒). | ||
M0 = No distant metastasis. | ||
IVA | T1, T2, T3, T4a, N2, M0 | T1, T2, T3, T4a = See Table |
N2 = See Table |
||
M0 = No distant metastasis. | ||
IVB | Any T, N3, M0 | Any T = See Table |
N3 = See Table |
||
M0 = No distant metastasis. | ||
IVB | T4b, Any N, M0 | T4b = Very advanced local disease. Tumor invades prevertebral fascia, encases carotid artery, or involves mediastinal structures. |
Any N = See Table |
||
M0 = No distant metastasis. | ||
IVC | Any T, Any N, M1 | Any T = See Table |
Any N = See Table |
||
M1 = Distant metastasis. |
References:
Hypopharyngeal cancer usually does not cause symptoms until late in the course of the disease. Coupled with the high incidence of early metastasis, survival rates for carcinoma of the hypopharynx are perhaps the lowest of all cancer sites in the head and neck.
No single therapeutic regimen offers a superior survival advantage over other regimens. Although the literature highlights various therapeutic options, few reports present any valid comparative studies. The ultimate therapeutic choice will depend on a careful review of each individual case, paying attention to the staging of the neoplasm, the patient's general physical condition and emotional status, the experience of the treating team, and the available treatment facilities.[
Treatment Overview
Except for very early stage (T1) cancers of this region, treatment has primarily been surgery, usually followed with postoperative radiation therapy (PORT). Some early stage (T1 and T2), low-volume, exophytic pyriform sinus carcinomas have been successfully treated with radiation therapy alone.[
Combined-modality treatment should be considered for patients with stage III or stage IV disease.[
A review of published clinical results of radical radiation therapy for head and neck cancer suggests a significant loss of local control when radiation therapy was prolonged; therefore, lengthening of standard treatment schedules should be avoided whenever possible.[
Chronic pulmonary and hepatic diseases related to excessive tobacco and alcohol use are common in patients with head and neck cancer; recognition of these comorbidities is essential when planning appropriate treatment.[
Fluorouracil Dosing
The DPYD gene encodes an enzyme that catabolizes pyrimidines and fluoropyrimidines, like capecitabine and fluorouracil. An estimated 1% to 2% of the population has germline pathogenic variants in DPYD, which lead to reduced DPD protein function and an accumulation of pyrimidines and fluoropyrimidines in the body.[
References:
Treatment Options for Stage I Hypopharyngeal Cancer
Except for the very early T1 cancers of this region, treatment has been primarily surgery, usually followed with postoperative radiation therapy. Because these tumors are clinically silent until they reach advanced stages, it is very unusual to diagnose them at the T1 N0 stage. In most available retrospective reviews, T1 N0 cases represent only 1% to 2% of all patients seen. In the case of exophytic T1 N0 lesions, radiation therapy alone may be considered.[
Treatment options for stage I hypopharyngeal cancer include:
In very selected cases of pyriform sinus cancers, that is, those arising in the upper lateral wall, a partial laryngopharyngectomy may be successfully used to preserve vocal function. All groups who use radiation therapy advocate high-dose treatment to the primary site and to both sides of the neck to include the retropharyngeal and lateral cervical nodes.[
Current Clinical Trials
Use our
References:
Treatment Options for Stage II Hypopharyngeal Cancer
Treatment has been primarily surgery, which is usually followed with postoperative radiation therapy (PORT). Because these tumors are clinically silent until they reach advanced stages, it is very unusual to diagnose these tumors at the T2 N0 stage.
Treatment options for stage II hypopharyngeal cancer include:
In very selected cases of pyriform sinus cancers, that is, those arising in the upper medial wall, a partial laryngopharyngectomy may be successfully used to preserve vocal function. In T2 cases, PORT has been given in combination with surgery in an effort to improve the local control rates of surgery alone. There are advocates of preoperative radiation therapy, but all groups giving radiation therapy advocate high-dose treatment to the primary site and to both sides of the neck to include the retropharyngeal and lateral cervical nodes.[
The use of neoadjuvant chemotherapy to increase organ preservation has also been advocated. In a prospective randomized trial (GORTEC-TREMPLIN trial [NCT00169247]), the European Organisation for the Research and Treatment of Cancer compared surgery plus PORT with neoadjuvant chemotherapy (i.e., cisplatin plus fluorouracil) followed by radiation therapy in responding patients. Local and regional failures were similar in both groups. Although median survival was 25 months in the immediate surgery arm of the study and 44 months in the induction chemotherapy arm (P = .006), 5-year disease-free and overall survival were the same. A functional larynx was preserved in 42% of patients at 3 years and 35% at 5 years in patients who received induction chemotherapy. These data have not been confirmed by other phase III trials but suggest that larynx preservation may be feasible without jeopardizing survival.[
Most neoadjuvant chemotherapy clinical trials have included patients with stage II hypopharyngeal carcinoma because of the low survival rates for this population.[
Current Clinical Trials
Use our
References:
Treatment Options for Stage III Hypopharyngeal Cancer
The management of patients with stage III hypopharyngeal cancer is complex and requires multidisciplinary input to establish the optimal treatment regimen. New surgical techniques and reconstructions (using the gastric pull-up operation or free jejunal transfers) have greatly reduced the morbidity associated with resection of these tumors and have almost eliminated the need for multistage reconstructions. This has greatly aided the combined treatment regimens because these patients have a high likelihood of beginning postoperative radiation therapy (PORT) within 3 to 4 weeks following resection.
Details of surgical procedures and modifications of radiation fields or dosage schedules are not specifically designated here because of legitimate variations in techniques that, according to various retrospective data, give similar survival results in different treatment centers. This group of patients should be managed by surgeons and radiation oncologists who are skilled in the multiple procedures and techniques available, and who are actively and frequently involved in the care of these patients.
Treatment options for stage III hypopharyngeal cancer include:
The use of neoadjuvant chemotherapy to increase organ preservation has also been advocated. In a prospective randomized trial (GORTEC-TREMPLIN [NCT00169247]), the European Organisation for the Treatment and Research of Cancer compared surgery plus PORT with induction chemotherapy (i.e., cisplatin plus fluorouracil [5-FU]) followed by radiation in responding patients.[
In contrast to this, another randomized prospective trial has demonstrated a statistically significant survival advantage for patients undergoing chemotherapy (i.e., cisplatin plus 5-FU) followed by laryngopharyngectomy and PORT when compared with chemotherapy and radiation therapy.[
In a prospective randomized trial, postoperative adjuvant radiation therapy alone was compared with postoperative adjuvant radiation therapy plus concurrent chemotherapy. Both the OS (P < .01) and the DFS (P < .02) were better in the group of patients receiving radiation therapy plus concurrent chemotherapy.[
Concurrent chemotherapy is a standard treatment option for patients with locally advanced (stage III and stage IV) hypopharyngeal cancer. A meta-analysis of 93 randomized prospective head and neck cancer trials published between 1965 and 2000 showed a 4.5% absolute survival advantage in the subset of patients who received chemotherapy and radiation therapy.[
For more information about treatment options for stage III hypopharyngeal cancer, see the
Current Clinical Trials
Use our
References:
Treatment Options for Resectable Stage IV Hypopharyngeal Cancer
The management of patients with resectable hypopharyngeal cancer is complex and requires multidisciplinary input to establish the optimal treatment regimen. New surgical techniques and reconstructions using the gastric pull-up operation or free jejunal transfers have greatly reduced the morbidity associated with resection of these tumors and have almost eliminated the need for multistage reconstructions. This has greatly aided the combined treatment regimens because these patients have a high likelihood of beginning postoperative radiation therapy within 3 to 4 weeks following resection.
Details of surgical procedures and modifications of radiation fields or dosage schedules are not specifically designated here because of legitimate variations in techniques that, according to various retrospective data, give similar survival results in different treatment centers. This group of patients should be managed by surgeons and radiation oncologists who are skilled in the multiple procedures and techniques available, and who are actively and frequently involved in the care of these patients.
Treatment options for resectable stage IV hypopharyngeal cancer include:
The use of neoadjuvant chemotherapy to increase organ preservation has also been advocated. In a prospective randomized trial (GORTEC-TREMPLIN [NCT00169247]), the European Organisation for the Research and Treatment of Cancer compared surgery plus PORT with induction chemotherapy (i.e., cisplatin plus fluorouracil [5-FU]) followed by radiation in responding patients.[
In contrast to this, another randomized prospective trial has demonstrated a statistically significant survival advantage for patients undergoing chemotherapy (i.e., cisplatin plus 5-FU) followed by laryngopharyngectomy and PORT when compared with chemotherapy and radiation therapy.[
In a prospective randomized trial, postoperative adjuvant radiation therapy alone was compared with postoperative adjuvant radiation therapy plus concurrent chemotherapy. Both the OS (P < .01) and the DFS (P < .02) were better in the group of patients who received radiation therapy plus concurrent chemotherapy.[
Treatment Options for Unresectable Stage IV Hypopharyngeal Cancer
Treatment options for unresectable stage IV hypopharyngeal cancer include:
Concurrent chemotherapy is a standard treatment option for patients with locally advanced (stage III and stage IV) hypopharyngeal cancer. A meta-analysis of 93 randomized prospective head and neck cancer trials published between 1965 and 2000 showed a 4.5% absolute survival advantage in the subset of patients who received chemotherapy and radiation therapy.[
Posttreatment follow-up for unresectable stage IV hypopharyngeal cancer
These patients should have a careful head and neck examination, looking for recurrence monthly for the first posttreatment year, every 2 months for the second year, every 3 months the third year, and every 6 months thereafter.
Current Clinical Trials
Use our
References:
Treatment Options for Metastatic and Recurrent Hypopharyngeal Cancer
Treatment options for metastatic and recurrent hypopharyngeal cancer include:
Immunotherapy
Pembrolizumab
Pembrolizumab is a monoclonal antibody and an inhibitor of the programmed death-1 (PD-1) pathway. Studies have evaluated pembrolizumab in patients with incurable metastatic or recurrent head and neck squamous cell carcinoma (SCC).
Evidence (pembrolizumab as first-line therapy):
The primary end points were overall survival (OS) and progression-free survival (PFS). Progression was defined as radiographically confirmed disease progression or death from any cause, whichever came first, in the intention-to-treat population.
Pembrolizumab plus a platinum and 5-FU is an appropriate first-line treatment for patients with metastatic or recurrent head and neck SCC. Pembrolizumab monotherapy is an appropriate first-line treatment for patients with PD-L1–positive metastatic or recurrent head and neck SCC. These results were confirmed at a longer median follow-up of 45 months (interquartile range, 41.0–49.2).[
Evidence (pembrolizumab after progression on platinum-based treatment):
Nivolumab
Nivolumab is a fully human immunoglobulin G4 anti–PD-1 monoclonal antibody.
Evidence (nivolumab combined with ipilimumab in patients who have not previously received systemic therapy):
The absence of a survival benefit for immune checkpoint inhibitors in this trial was an unexpected outcome, given the similarity of nivolumab to pembrolizumab in the studies of patients with cisplatin-refractory disease.[
Evidence (nivolumab after progression on platinum-based treatment):
Although the control arm in this study cannot be considered standard care, lower doses of immunotherapy appeared to have some benefit in this setting.[
Posttreatment follow-up for metastatic and recurrent hypopharyngeal cancer
These patients should have a careful head and neck examination, looking for recurrence monthly for the first posttreatment year, every 2 months for the second year, every 3 months the third year, and every 6 months thereafter.
Current Clinical Trials
Use our
References:
The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.
Revised the
Added
This summary is written and maintained by the
Purpose of This Summary
This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the treatment of adult hypopharyngeal cancer. It is intended as a resource to inform and assist clinicians in the care of their patients. It does not provide formal guidelines or recommendations for making health care decisions.
Reviewers and Updates
This summary is reviewed regularly and updated as necessary by the
Board members review recently published articles each month to determine whether an article should:
Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.
The lead reviewers for Hypopharyngeal Cancer Treatment are:
Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website's
Levels of Evidence
Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Adult Treatment Editorial Board uses a
Permission to Use This Summary
PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as "NCI's PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary]."
The preferred citation for this PDQ summary is:
PDQ® Adult Treatment Editorial Board. PDQ Hypopharyngeal Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at:
Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in
Disclaimer
Based on the strength of the available evidence, treatment options may be described as either "standard" or "under clinical evaluation." These classifications should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the
Contact Us
More information about contacting us or receiving help with the Cancer.gov website can be found on our
Last Revised: 2024-11-22
This information does not replace the advice of a doctor. Ignite Healthwise, LLC, disclaims any warranty or liability for your use of this information. Your use of this information means that you agree to the
Healthwise, Healthwise for every health decision, and the Healthwise logo are trademarks of Ignite Healthwise, LLC.
Individual and family medical and dental insurance plans are insured by Cigna Health and Life Insurance Company (CHLIC), Cigna HealthCare of Arizona, Inc., Cigna HealthCare of Illinois, Inc., Cigna HealthCare of Georgia, Inc., Cigna HealthCare of North Carolina, Inc., Cigna HealthCare of South Carolina, Inc., and Cigna HealthCare of Texas, Inc. Group health insurance and health benefit plans are insured or administered by CHLIC, Connecticut General Life Insurance Company (CGLIC), or their affiliates (see
All insurance policies and group benefit plans contain exclusions and limitations. For availability, costs and complete details of coverage, contact a licensed agent or Cigna sales representative. This website is not intended for residents of New Mexico.