Learn about the medical, dental, pharmacy, behavioral, and voluntary benefits your employer may offer.
Histiocytic diseases in children and adults are caused by an abnormal accumulation of cells of the mononuclear phagocytic system. This summary discusses only Langerhans cell histiocytosis (LCH), a myeloid-derived dendritic cell disorder.
Histiocytic diseases have been reclassified into five categories, with LCH in the L group (see Table 1).[
Histiocytosis Group | Diseases | |
---|---|---|
AXG = adult xanthogranuloma; BCH = benign cephalic histiocytosis; GEH = generalized eruptive histiocytosis; HLH = hemophagocytic lymphohistiocytosis; JXG = juvenile xanthogranuloma; LCH = Langerhans cell histiocytosis; MRH = multicentric reticulohistiocytosis; NXG = necrobiotic xanthogranuloma; PNH = progressive nodular histiocytosis; RDD = Rosai-Dorfman disease; SRH = solitary reticulohistiocytoma; XD = xanthoma disseminatum. | ||
a Adapted from Emile et al.[ |
||
b Reprinted from |
||
L Group | LCH | |
Indeterminate-cell histiocytosis (ICH) | ||
Erdheim-Chester disease (ECD) | ||
Mixed LCH/ECD | ||
C Group | Cutaneous non-LCH | |
Xanthomatous granuloma (XG) family: JXG, AXG, SRH, BCH, GEH, PNH | ||
Non-XG family: Cutaneous RDD, NXG, other | ||
Cutaneous non-LCH with a major systemic component | ||
XG family: XD | ||
Non-XG family: MRH | ||
R Group | Familial RDD | |
Sporadic RDD | ||
Classical RDD | ||
Extranodal RDD | ||
RDD with neoplasia or immune disease | ||
Unclassified | ||
M Group | Primary malignant histiocytoses | |
Secondary malignant histiocytoses | ||
H Group | Primary HLH: Monogenic inherited conditions leading to HLH | |
Secondary HLH (non-Mendelian HLH) | ||
HLH of unknown/uncertain origin |
LCH cells, known for many years to be a clonal proliferation, have now been shown to likely derive from a myeloid precursor whose proliferation is uniformly associated with activation of the MAPK/ERK signaling pathway.[
Clinically, LCH is a heterogenous disease that may involve a single organ (single-system LCH), which may be a single site (unifocal) or involve multiple sites (multifocal). It may also involve multiple organs (multisystem LCH). Multisystem LCH may involve a limited number of organs or be disseminated. Involvement of specific organs such as the liver, spleen, and hematopoietic system separates multisystem LCH into high-risk (multisystem risk-organ positive) and low-risk (multisystem risk-organ negative) groups, where risk indicates the risk of death from the disease.
References:
Cell of Origin and Biological Correlates
The pathological histiocyte or Langerhans cell histiocytosis (LCH) cell has a gene expression profile closely resembling that of a myeloid dendritic cell. Studies have also demonstrated that the BRAF V600E variant can be identified in mononuclear cells in peripheral blood and cell-free DNA, usually in patients with disseminated disease.[
Modern classification of the histiocytic diseases subdivides them into dendritic cell–related, monocyte/macrophage-related, or true malignancies. LCH is a dendritic cell disease.[
LCH is now considered a myeloid neoplasm. However, some controversy remains as to whether it is a true malignancy or a neoplasm with varying clinical behavior. The same BRAF V600E variant has been found in many cancers; however, V600E-altered BRAF is also present in benign nevi, possibly indicating that malignant transformation requires additional variants.[
For more information, see the sections on Cytogenetic and Genomic Studies and Cytokine Analysis.
Histopathology
The Langerhans histiocytosis cells in LCH lesions (LCH cells) are immature dendritic cells, making up fewer than 10% of the cells present in the lesion.[
Because LCH cells activate other immunologic cells, LCH lesions also contain other histiocytes, lymphocytes, macrophages, neutrophils, eosinophils, and fibroblasts, and they may contain multinucleated giant cells.
In the brain, the following three types of histopathological findings have been described in LCH:
Immunologic Abnormalities
Normally, the LC is a primary presenter of antigen to naïve T lymphocytes. However, in LCH, the pathological dendritic cell does not efficiently stimulate primary T-lymphocyte responses.[
An expansion of regulatory T cells in patients with LCH has been reported.[
Cytogenetic and Genomic Studies
Genomics of LCH
BRAF,NRAS, andARAFvariants
The genomic basis of LCH was advanced by a 2010 report of an activating variant of the BRAF oncogene (V600E) that was detected in 35 of 61 cases (57%).[
The presence of the BRAF V600E variant in blood and bone marrow was studied in a series of 100 patients, 65% of whom tested positive for the BRAF V600E variant by a sensitive quantitative polymerase chain reaction technique.[
The myeloid dendritic cell origin of LCH was confirmed by finding CD34-positive stem cells with the variant in the bone marrow of high-risk patients. In those with low-risk disease, the variant was found in more mature myeloid dendritic cells, suggesting that the stage of cell development at which the somatic variant occurs is critical in defining the extent of disease in LCH.
Pulmonary LCH in adults was initially reported to be nonclonal in approximately 75% of cases,[
In a study of 117 patients with LCH, 83 adult patients with pulmonary LCH underwent molecular analysis. Nearly 90% of these patients had variants in the MAPK pathway.[
Figure 1. Courtesy of Rikhia Chakraborty, Ph.D. Permission to reuse the figure in any form must be obtained directly from Dr. Chakraborty.
The RAS-MAPK signaling pathway (see Figure 1) transmits signals from a cell surface receptor (e.g., a growth factor) through the RAS pathway (via one of the RAF proteins [A, B, or C]) to phosphorylate MEK and then the extracellular signal-regulated kinase (ERK), which leads to nuclear signals affecting cell cycle and transcription regulation. The V600E variant of BRAF leads to continuous phosphorylation, and thus activation, of MEK and ERK without the need for an external signal. Activation of ERK occurs by phosphorylation, and phosphorylated ERK can be detected in virtually all LCH lesions.[
In a mouse model of LCH, the BRAF V600E variant was shown to inhibit a chemokine receptor (CCR7)–mediated migration of dendritic cells, forcing them to accumulate in the LCH lesion.[
Another mouse model with the BRAF V600E variant under control of Scl or Map17 gene promoters added additional insights into the biology of neurodegenerative LCH.[
In summary, LCH is now considered a myeloid neoplasm primarily driven by activating variants of the MAPK pathway. Fifty percent to 60% of the activating variants are caused by BRAF V600E variants, which are enriched in patients with multisystem risk organ–positive LCH and in patients with neurodegenerative-disease LCH.[
Other RAS-MAPK pathway alterations
Because RAS-MAPK pathway activation (elevated phosphor-ERK) can be detected in all LCH cases, including those without BRAF variants, the presence of genomic alterations in other components of the pathway was suspected. The following genomic alterations were identified:
Another study showed MAP2K1 variants exclusively in 11 of 22 BRAF–wild-type cases.[
In summary, studies support the universal activation of ERK in LCH. ERK activation in most cases of LCH is explained by BRAF and MAP2K1 alterations.[
Clinical implications
Clinical implications of the described genomic findings include the following:
BRAF V600E variants can be targeted by BRAF inhibitors (e.g., vemurafenib and dabrafenib) or by the combination of BRAF inhibitors plus MEK inhibitors (e.g., dabrafenib/trametinib and vemurafenib/cobimetinib). These agents and combinations are approved for adults with melanoma. Treatment of melanoma in adults with combinations of a BRAF inhibitor and a MEK inhibitor showed significantly improved progression-free survival outcomes compared with treatment using a BRAF inhibitor alone.[
Several case reports and two case series have also demonstrated the efficacy of BRAF inhibitors for the treatment of LCH in children.[
Cytokine Analysis
Immunohistochemical staining has shown upregulation of many different cytokines/chemokines, both in LCH lesions and in the serum/plasma of patients with LCH.[
One study evaluated possible biomarkers for central nervous system LCH. The study examined 121 unique proteins in the cerebrospinal fluid (CSF) of 40 pediatric patients with LCH and compared them with controls, which included 29 patients with acute lymphoblastic leukemia, 25 patients with brain tumors, 28 patients with neurodegenerative diseases, and 9 patients with hemophagocytic lymphohistiocytosis. Only osteopontin proved to be significantly increased in the CSF of LCH patients with either neurodegeneration or mass lesions (pituitary), compared with all of the control groups. Analysis of osteopontin expression in these tissues confirmed an upregulation of the SPP1 gene.[
Several investigators have published studies evaluating the level of various cytokines or growth factors in the blood of patients with LCH. These studies have included many of the genes found not to be upregulated by the gene expression results discussed above.[
IL-1 beta and prostaglandin GE2 levels were measured in the saliva of patients with oral LCH lesions or multisystem high-risk patients with and without oral lesions. Levels of both were higher in patients with active disease and decreased after successful therapy.[
References:
General Information About Childhood LCH
Incidence
The annual incidence of Langerhans cell histiocytosis (LCH) has been estimated to be between two and ten cases per 1 million children aged 15 years or younger.[
A population-based study identified 658 patients with LCH who were diagnosed in England from 2013 to 2019.[
Surveillance, Epidemiology, and End Results (SEER) registry data from 2000 to 2009 were reviewed to identify high-risk LCH cases and assess demographic variables.[
Risk factors
Although the following risk factors have been proposed for LCH, strong and consistent associations have not been confirmed:
Efforts to define a viral cause have not been successful.[
Diagnostic evaluation
The complete evaluation of any patient presenting with LCH includes the following:[
Other tests and procedures include the following:
In patients with severe multisystem LCH, additional tests for secondary hemophagocytic lymphohistiocytosis such as ferritin, triglycerides, fibrinogen, d-dimers, lactate dehydrogenase, CXCL9, and sCD25, may be indicated.
CT scan of the lungs may be indicated for patients with abnormal chest X-rays or pulmonary symptoms. High-resolution CT scans may show evidence of pulmonary LCH when the chest X-ray is normal. Thus, in infants and toddlers with normal chest X-rays, a CT scan may be considered when respiratory signs or symptoms are present. Patients with pulmonary LCH may also have normal chest X-rays and abnormal pulmonary function tests.[
LCH causes fatty changes in the liver or hypodense areas along the portal tract, which can be identified by CT scan, if indicated.[
All patients with vertebral body involvement need careful assessment of associated soft tissue, which may impinge on the spinal cord.
MRI findings of central nervous system (CNS) LCH include T2 FLAIR enhancement in the pons, basal ganglia, white matter of the cerebellum, and mass lesions or meningeal enhancement. In a report of 163 patients, meningeal lesions were found in 29% of patients and choroid plexus involvement was found in 6% of patients. Paranasal sinus or mastoid lesions were found in 55% of patients versus 20% of controls, and accentuated Virchow-Robin spaces were found in 70% of patients versus 27% of controls.[
A pathological diagnosis is always required to make a definitive diagnosis. However, this may sometimes be difficult or contraindicated, such as in isolated pituitary stalk disease or vertebra plana without a soft tissue mass, when the risk outweighs the benefit of a firm diagnosis.
Prognostic factors
Survival is closely linked to the extent of disease at presentation when high-risk organs (liver, spleen, and/or bone marrow) are involved, as well as the response to initial treatment. Many studies have confirmed the high mortality rate (35%) in patients with high-risk multisystem disease, when they do not respond well to therapy in the first 6 weeks.[
For many years, lungs were thought to be high-risk organs, but isolated lung involvement in pediatric LCH is no longer considered to pose a significant risk of death,[
Patients with single-system disease and low-risk multisystem disease do not usually die of LCH, but recurrent disease may result in considerable morbidity and significant late effects.[
Most high-risk patients whose disease reactivated (30%) after achieving a no active disease (NAD) status will do so in low-risk organs such as bone. These patients will have the same risk of late effects as patients with low-risk multisystem disease.[
Apart from disease extent, prognostic factors for children with LCH include the following:
A study of 173 patients with the BRAF V600E variant and 142 without the variant revealed that the variant occurred in 88% of patients with high-risk disease, 69% of patients with multisystem low-risk LCH, and 44% of patients with single-system low-risk LCH.[
An earlier study of 100 patients did not find all these clinical correlations, except that relapses occurred more frequently in patients with low-risk and high-risk LCH and the BRAF V600E variant.[
An international collaborative study of 377 patients found 300 patients (79.6%) with MAPK pathway variants and compared them with patients without variants. This study confirmed the findings of a previous study. It also found an increased risk of CNS-risk bone LCH, gastrointestinal and skin involvement, and fewer cases of BRAF-positive single-system, multifocal bone LCH among patients with MAPK pathway variants.[
A significant proportion of patients who survive LCH experience disease relapses and/or develop permanent conditions. Central diabetes insipidus is the most common condition, and CNS neurodegenerative LCH is the most severe condition.[
Follow-up considerations in childhood LCH
Because of the risk of reactivation (which ranges from 10% in single-system unifocal bone lesions to close to 50% in low-risk and high-risk multisystem LCH) and the risk of permanent long-term effects, LCH patients need to be monitored for many years.
Patients with diabetes insipidus and/or skull lesions in the orbit, mastoid, or temporal bones appear to be at higher risk of LCH CNS involvement and LCH CNS neurodegenerative syndrome. These patients should have MRI scans with gadolinium contrast at the time of LCH diagnosis and every 1 to 2 years thereafter for 10 years to detect evidence of CNS disease.[
Auditory brain-stem response tests should be done at regular intervals to define the onset of clinical CNS LCH as early as possible, as this may affect response to therapy.[
For children with LCH in the lung, pulmonary function testing and chest CT scans are sensitive methods for detecting disease progression.[
A 16-year follow-up study of patients from one institution suggested that children with LCH have an increased risk of developing adult smoker's lung LCH compared with normal young adults who smoke. Ongoing re-education regarding this risk should be part of the routine follow-up of children with LCH at any site.[
In summary, many patients with multisystem disease will experience long-term sequelae caused by their underlying disease and/or treatment. Endocrine and CNS sequelae are the most common. These long-term sequelae significantly affect health-related quality of life in many of these patients.[
Special Considerations for the Treatment of Children With Cancer
Cancer in children and adolescents is rare, although the overall incidence has been slowly increasing since 1975.[
For specific information about supportive care for children and adolescents with cancer, see the summaries on
The American Academy of Pediatrics has outlined guidelines for pediatric cancer centers and their role in the treatment of children and adolescents with cancer.[
Low-Risk Disease: Single-System or Multisystem LCH
Clinical presentation of low-risk, single-system or multisystem LCH
LCH most commonly presents as a painful bone lesion, with skin being the second most commonly involved organ. Systemic symptoms of fever, weight loss, diarrhea, edema, dyspnea, polydipsia, and polyuria relate to specific organ involvement and single-system or multisystem disease presentation (see Table 2).[
Clinical Group | Description | ||
---|---|---|---|
CNS = central nervous system; LACI = LCH-associated abnormal CNS imaging; LACS = LCH-associated abnormal CNS symptoms; LCH = Langerhans cell histiocytosis. | |||
a Reprinted from |
|||
Multisystem | Two or more systems involved | ||
With risk-organ involvement | Involvement of liver, spleen, or bone marrow | ||
Without risk-organ involvement | Without involvement of liver, spleen, or bone marrow | ||
Single-system | Only one system involved | ||
Single site | Skin, bone, lymph node, other (thyroid, thymus) | ||
Multiple sites | Multifocal bone disease | ||
Special site | Skull-base lesion with intracranial extension or vertebral lesion with intraspinal soft tissue extension | ||
Pulmonary LCH | Isolated lung disease | ||
CNS LCH | Tumorous lesions | ||
Neurodegenerative disease | |||
LACI | |||
LACS |
Specific organs are considered high risk or low risk when involved at disease presentation. Risk refers to the risk of mortality in high-risk patients. Chronic recurrent involvement of low-risk organs, while usually not life-threatening, can result in potentially devastating long-term consequences.
Patients may present with single-organ involvement (single-system LCH), which may involve a single site (unifocal) or multiple sites (multifocal). Bone is the most common single-organ site. Less commonly, LCH may involve multiple organs (multisystem LCH), which may involve a limited number of organs, or it may be disseminated. Patients can have LCH of the skin, bone, lymph nodes, and pituitary gland in any combination and still be considered at low risk of death, although there may be a relatively high risk of developing long-term consequences of the disease.
Treatment decisions for patients are based on whether high-risk or low-risk organs are involved and whether LCH presents as unifocal, multifocal, or multisystem disease.
Single-system low-risk disease presentation
In single-system low-risk LCH, the disease presents with involvement of a single site or organ, including the following:
Bone
Bone is the most commonly affected system, estimated to be involved in 80% of patients with LCH. LCH can occur in any bone of the body, although the hands and feet are often spared.[
Sites of LCH bone lesions in children include the following:
Skin and nails
Skin LCH in infants may be limited to skin (skin-only disease) or may be part of multisystem LCH. In a report of 61 neonatal cases from 1,069 patients in the Histiocyte Society database, nearly 60% (36 of 61 patients) had multisystem disease, and 72% of the patients with multisystem disease had risk-organ involvement.[
Skin-only LCH may be self-limited because the lesions may disappear without therapy during the first year of life. Therapy is used only for very extensive rashes, pain, ulceration, or bleeding. These patients must be monitored closely because skin-only LCH in neonates and very young infants may progress within weeks or months to high-risk multisystem disease, which may be life-threatening.[
In a review of patients presenting in the first 3 months of life with skin-only LCH, the clinical and histopathological findings of 21 children whose skin LCH regressed were compared with those of 10 children whose disease did not regress.[
Hashimoto-Pritzker disease or congenital spontaneous regressing skin histiocytosis is a self-limited disease that has the same immunohistochemical staining as LCH but, on electron microscopy, shows dense bodies thought to be senescent mitochondria.[
Fingernail involvement is an unusual finding that may present as a single site or with other sites of LCH involvement. In this scenario, there are longitudinal, discolored grooves and loss of nail tissue. This condition often responds to the usual LCH therapies.[
Oral cavity
In the mouth, presenting symptoms include gingival hypertrophy and ulcers on the soft or hard palate, buccal mucosa, or tongue and lips. Hypermobile teeth (floating teeth) and tooth loss usually indicate involvement of underlying bone.[
Lymph nodes and thymus
The cervical nodes are most frequently involved and may be soft-matted or hard-matted groups with accompanying lymphedema. An enlarged thymus or mediastinal node involvement can mimic an infectious process and may cause asthma-like symptoms. Accordingly, biopsy with culture is indicated for these presentations. Mediastinal involvement is rare (<5%) and usually presents with respiratory distress, superior vena cava syndrome, or cough and tachypnea. The 5-year survival rate for these patients is 87%, with deaths mostly attributable to hematologic involvement.[
Lung
In LCH, the lungs are less frequently involved in children than in adults because smoking in adults is a key etiologic factor.[
The cystic/nodular pattern of disease reflects the cytokine-induced destruction of lung tissue. Classically, the disease is symmetrical and predominates in the upper and middle lung fields, sparing the costophrenic angle and giving a very characteristic picture on high-resolution CT scan.[
Widespread fibrosis and declining diffusion capacity are much less common in children. In young children with diffuse disease, therapy can halt the progress of the tissue destruction, and normal repair mechanisms may restore lung function, although scarring or even residual nonactive cysts may continue to be visible on radiological studies.
Pituitary gland
The posterior part of the pituitary gland and pituitary stalk can be affected in patients with LCH, causing central diabetes insipidus. Anterior pituitary involvement often results in growth failure and delayed or precocious puberty. Rarely, hypothalamic involvement may cause morbid obesity. For more information about diabetes insipidus, see the Endocrine system section.
Thyroid gland
Thyroid involvement has been reported in LCH. Symptoms include massive thyroid enlargement, hypothyroidism, and respiratory symptoms.[
Multisystem low-risk disease presentation
Bone and other organ systems
Patients with LCH may present with multiple bone lesions as the only organ involved (single-system multifocal bone) or with bone lesions and other organ systems involved (multisystem including bone). A Japanese LCH study (JLSG-02) included patients with single-system multifocal bone presentation and patients with multisystem-including-bone presentation. A review of the study found that patients in the multisystem-including-bone group were more likely to have lesions in the temporal bone, mastoid/petrous bone, orbit, and zygomatic bone (i.e., CNS-risk bones).[
Abdominal organs and gastrointestinal system
In LCH, the liver and spleen are considered high-risk organs, and involvement of these organs affects prognosis. For more information, see the sections on Liver (sclerosing cholangitis) and Spleen.
Although rare, LCH infiltration of the pancreas and kidneys has been reported.[
Patients with diarrhea, hematochezia, perianal fistulas, or malabsorption have been reported.[
Endocrine system
Diabetes insipidus, caused by LCH-induced damage to the antidiuretic hormone-secreting cells of the posterior pituitary, is the most frequent endocrine manifestation in LCH.[
Approximately 4% of patients with LCH present with an apparently idiopathic form of diabetes insipidus before other lesions of LCH are identified. A prospective follow-up study included pediatric patients who presented with idiopathic central diabetes insipidus and received only diabetes insipidus therapy. The study showed that 19% of patients eventually developed signs of LCH, while 18% were diagnosed with craniopharyngiomas and 10% with germinomas.[
The approach is different for patients with known LCH and diabetes insipidus. These patients are 50% to 80% more likely to develop other lesions that are diagnostic of LCH (including bone, lung, and skin lesions) within 1 year of diabetes insipidus onset.[
Patients with multisystem disease and craniofacial involvement (particularly of the orbit, mastoid, and temporal bones) at the time of diagnosis carried a significantly increased risk of developing diabetes insipidus during the disease course (relative risk, 4.6). Of LCH patients with diabetes insipidus, 75% had these CNS-risk bone lesions.[
Approximately 50% of patients who present with isolated diabetes insipidus (as the initial manifestation of LCH) either have anterior pituitary deficits at the time of diagnosis or develop them within 10 years of diabetes insipidus onset.[
Ocular
Ocular LCH, although rare, has been reported and can sometimes lead to blindness. Other organ systems may be involved, and ocular LCH may not respond well to conventional chemotherapy.[
CNS
CNS disease manifestations
Patients with LCH may develop mass lesions in the hypothalamic-pituitary region, the choroid plexus, the grey matter, or the white matter.[
Patients with large pituitary tumors (>6.5 mm) have a higher risk of anterior pituitary dysfunction and neurodegenerative CNS LCH.[
Clinical neurodegenerative syndrome LCH (cND-LCH)
A chronic neurodegenerative syndrome, cND-LCH, occurs in 1% to 4% of patients with LCH. These patients may develop tremors, gait disturbances, ataxia, dysarthria, headaches, visual disturbances, cognitive and behavioral problems, and psychosis.
Among 1,897 patients with LCH, 36 patients were diagnosed with cND-LCH. The incidence of cND-LCH was 4.1% at 10 years of follow-up. cND-LCH was more frequent in patients with pituitary involvement (86.1% vs. 12.2% without pituitary lesions), skin involvement (75% vs. 34.2% without skin lesions), and base skull bone involvement (63.9% vs. 28.4% without skull lesions). Patients with the BRAF variant were more likely to have cND-LCH (93.7%) than those without the variant (54.1%). In the multivariable analysis, the odds ratio of developing cND-LCH was 2.13 for patients with base skull lesions, 9.8 for patients with the BRAF V600E variant, and 30.88 for patients with pituitary involvement. The risk of cND-LCH had not plateaued up to 20 years after LCH diagnosis.[
Brain MRI scans from these patients show hyperintensity of the dentate nucleus and white matter of the cerebellum on T2-weighted images or hyperintense lesions of the basal ganglia on T1-weighted images and/or atrophy of the cerebellum.[
The first histological evaluation of neurodegenerative lesions reported prominent T-cell infiltration, usually in the absence of the CD1a-positive dendritic cells, along with microglial activation and gliosis.[
A study evaluated CNS-related permanent consequences (neuropsychologic deficits) in 14 of 25 patients with LCH who were monitored for a median of 10 years.[
Treatment of low-risk disease: single-system or multisystem LCH
Over many years, national and international study groups have defined risk-based therapy groups for allocation of LCH patients on the basis of mortality risk and risk of late effects of the disease.
Depending on the site and extent of disease, treatment of LCH may include observation (after biopsy or curettage), surgery, radiation therapy, or oral, topical, and intravenous medication. The recommended duration of therapy is 12 months for patients who require chemotherapy for single-system bone, skin, or lymph node involvement.
For patients with high-risk and low-risk multisystem disease, the reactivation rate after 6 months of therapy was as high as 50% on the HISTSOC-LCH-I and HISTSOC-LCH-II trials.[
The standard treatment for LCH is based on data from international trials with large numbers of patients. However, some patients may have LCH involving only the skin, mouth, pituitary gland, or other sites not studied in these international trials. In these cases, therapy recommendations are based on case series that lack the evidence-based strength of the trials.
Clinical trials organized by the Histiocyte Society have been accruing patients on childhood treatment studies since the 1980s. Information about centers enrolling patients on these trials can be found on the
Treatment options for patients with low-risk, single-system or multisystem disease depend on the site of involvement, as follows:
Isolated skin involvement
Treatment options for patients with isolated skin involvement include the following:
Patients with skin-only involvement need to have a complete staging evaluation because 41% of these patients referred to one center had multisystem disease requiring treatment.[
For patients who require therapy, treatment options for symptomatic isolated skin lesions include the following:
Skeletal involvement
Single skull lesions of the frontal, parietal, or occipital regions, or single lesions of any other bone
Treatment options for patients with single skull lesions of the frontal, parietal, or occipital regions, or single lesions of any other bone, include the following:
Skull lesions in the mastoid, temporal, or orbital bones
The CNS-risk bones include the mastoid, temporal, spheroidal, zygomatic, ethmoidal, maxillary, orbital bones, sinuses, and lesions of the anterior or middle cranial fossa. Risk refers to the increased risk of progression to diabetes insipidus followed by brain (CNS) involvement.
The purpose of treating patients with isolated CNS-risk lesions is to decrease the chance of developing diabetes insipidus and other long-term neurological problems.[
Treatment options for patients with skull lesions in the mastoid, temporal, or orbital bones include the following:
There is controversy about whether systemic therapy is required for the first presentation of unifocal bone LCH, even in the CNS-risk bones. One retrospective review reported a series of patients with orbital or mastoid lesions who underwent only surgical curettage. The treatment was completed by a single surgeon, specialized in orbital, ear, nose, or throat diseases.[
However, when comparing the incidence rates of diabetes insipidus in patients who received little or no chemotherapy (20%–50% incidence) with the incidence rates reported by the German-Austrian-Dutch group DAL-HX 83 trial (10% incidence in patients treated for LCH), it appears that the weight of evidence from the DAL-HX 83 trial supports chemotherapy treatment to prevent diabetes insipidus in patients with LCH in CNS-risk bones.[
Vertebral or femoral bone lesions at risk of collapse
Treatment options for patients with vertebral or femoral bone lesions at risk of collapse include the following:
Multiple bone lesions (single-system multifocal bone lesions)
Treatment options for patients with multiple bone lesions (single-system multifocal bone lesions) at risk of collapse include the following:
A short treatment course (<6 months) with only a single agent (e.g., prednisone) is not sufficient, and the number of relapses is higher. A reactivation rate of 18% was reported with a multidrug treatment regimen that was used for 6 months versus a historical reactivation rate of 50% to 80% with surgery alone or with a single-drug treatment regimen.[
For information about additional agents used to treat multifocal bone LCH, see the Multiple bone lesions in combination with skin, lymph node, or diabetes insipidus (low-risk multisystem LCH) section.
Multiple bone lesions in combination with skin, lymph node, or diabetes insipidus (low-risk multisystem LCH)
Treatment options for patients with multiple bone lesions in combination with skin, lymph node, or diabetes insipidus (low-risk multisystem LCH) include the following:
Patients with low-risk multisystem LCH have a survival rate of almost 100%, but reactivations were shown to be major risk factors for significant late effects on the DAL and Histiocyte Society trials.[
Although bisphosphonates are used for bone LCH, some publications report response in other organs, such as skin.[
CNS disease
CNS lesions
CNS LCH lesions include the following:
Drugs that cross the blood-brain barrier, such as cladribine, or other nucleoside analogs, such as cytarabine, are used for active CNS LCH lesions.
Treatment options for patients with CNS LCH lesions include the following:
Clinical neurodegenerative syndrome LCH (cND-LCH)
There is no established optimal therapy for cND-LCH, and assessment of response can be difficult.[
In cND-LCH, T2 FLAIR hyperintense signals are present, most often in the cerebellar white matter, pons, basal ganglia, and, sometimes, in the cerebrum. It is not clear whether LCH changes in the cerebellum, pons, and basal ganglia diagnosed by MRI and without clinical neurological findings should be treated. Early studies suggested that not all LCH-related radiological changes progressed to clinical neurodegenerative disease. However, treatment in the early stages of clinical disease before permanent damage occurs appears to be important. The current recommendation is ongoing neurological evaluation both clinically and with MRI scanning. Therapy starts as soon as clinical neurodegenerative disease progression is noted. It is unclear whether progressive radiological changes should be an indication for treatment.[
Other drugs used in active LCH, such as dexamethasone, cladribine, and infliximab, have been used in small numbers of patients with mixed results. Many of these agents may result in the complete or partial resolution of radiographic findings, but definitive clinical response rates have not been rigorously defined.[
Newer treatment options for patients with cND-LCH include the following:
Clinical experience suggests that BRAF V600E inhibitor therapy may be the most effective therapy for improving neurological symptoms in cND-LCH, but the therapy may need to be continued lifelong.[
In the Japan LCH Study Group (JLSG)-96 Protocol, cytarabine failed to prevent the onset of neurodegenerative syndrome. Patients received cytarabine 100 mg/m2 daily on days 1 to 5 during induction and 150 mg/m2 on day 1 of each maintenance cycle (every 2 weeks for 6 months). Three of 91 patients developed neurodegenerative disease, which is similar to the rate reported for patients on the Histiocyte Society studies.[
Early recognition of clinical neurodegeneration and early institution of therapy appear to be vital for success of therapy. Studies combining MRI findings together with CSF markers of demyelination, to identify patients who require therapy even before onset of clinical symptoms, are under way in several countries. Studies of CSF and serum biomarkers in an attempt to predict and prevent neurodegenerative disease are also ongoing.[
High-Risk Disease: Multisystem LCH
Clinical presentation of high-risk multisystem LCH
Liver (sclerosing cholangitis)
The liver may be enlarged from direct infiltration of LCH cells or as a secondary phenomenon of excess cytokines, which cause macrophage activation or infiltration of lymphocytes around bile ducts. LCH cells have a portal (bile duct) tropism that may lead to biliary damage and ductal sclerosis. Peribiliary LCH cells and, rarely, nodular masses of LCH may also be present.[
Sonography, CT, or MRI of the liver will show hypoechoic or low-signal intensity along the portal veins or biliary tracts when the liver is involved with LCH.[
Patients with hepatic LCH present with hepatomegaly (>3 cm below the costal margin in the midclavicular line) or hepatosplenomegaly and dysfunction, as evidenced by hypoproteinemia (<55 g/L, hypoalbuminemia <25 g/L), or histological findings of active disease.[
One of the most serious complications of hepatic LCH is cholestasis and sclerosing cholangitis.[
Spleen
Massive splenomegaly (usually >2 cm below costal margin in the midclavicular line),[
Bone marrow
Most patients with bone marrow involvement are young children who have diffuse disease in the liver, spleen, lymph nodes, and skin and who present with significant thrombocytopenia (<100,000 × 109 /L) and anemia (hemoglobin <10 g/dL; infants, <9 g/dL) not secondary to other causes, with or without leucopenia (<4.0 × 109 /L).[
Treatment of high-risk multisystem LCH
Over many years, national and international study groups have defined risk-based therapy groups for allocation of LCH patients on the basis of mortality risk and risk of late effects of the disease.
Depending on the site and extent of disease, treatment of LCH may include observation (after biopsy or curettage), surgery, radiation therapy, or oral, topical, and intravenous medication. The recommended duration of therapy is 12 months for patients who require chemotherapy for single-system bone, skin, or lymph node involvement.
For patients with high-risk and low-risk multisystem disease, the reactivation rate after 6 months of therapy was as high as 50% on the HISTSOC-LCH-I and HISTSOC-LCH-II trials.[
The standard treatment for LCH is based on data from international trials with large numbers of patients. However, some patients may have LCH involving only the skin, mouth, pituitary gland, or other sites not studied in these international trials. In these cases, therapy recommendations are based on case series that lack the evidence-based strength of the trials.
Clinical trials organized by the Histiocyte Society have been accruing patients on childhood treatment studies since the 1980s. Information about centers enrolling patients on these trials can be found on the
Treatment options for patients with high-risk multisystem disease (spleen, liver, and bone marrow involving one or more sites) include the following:
Chemotherapy
Evidence (chemotherapy):
Treatment options under clinical evaluation
Information about National Cancer Institute (NCI)–supported clinical trials can be found on the
The following are examples of national and/or institutional clinical trials that are currently being conducted:
It is preferable that patients with LCH be enrolled in a clinical trial whenever possible so that advances in therapy can be achieved more quickly, using evidence-based recommendations, and to ensure optimal care. Information about clinical trials for LCH in children is available from the
Current Clinical Trials
Use our
Recurrent, Refractory, or Progressive Childhood LCH
Reactivation of single-system and multisystem LCH
Reactivation of LCH after complete response is common.[
A comprehensive review of the German-Austrian-Dutch (DAL) and Histiocyte Society clinical trials revealed a reactivation rate of 46% at 5 years for patients with multisystem LCH, with most reactivations occurring within 2 years of first remission. A second reactivation occurred in 44% of patients, again within 2 years of the second remission. Involvement of the risk organs in these reactivations occurred only in those who were initially in the high-risk group (meaning they had liver, spleen, or bone marrow involvement at the time of original diagnosis).[
Consistent with these findings, the percentage of reactivations in multisystem disease was 45% in one trial from Japan [
Treatment of recurrent, refractory, or progressive low-risk disease: single-system or multisystem LCH
The optimal therapy for patients with recurrent, refractory, or progressive LCH has not been determined.
Treatment options for patients with recurrent, refractory, or progressive low-risk, single-system or multisystem LCH include the following:
Chemotherapy
The following chemotherapy regimens have been used to treat patients with recurrent, refractory, or progressive low-risk disease:
In a study of 44 pediatric patients with low-risk LCH who were treated with cladribine, 5 patients achieved complete remissions after a median follow-up of over 5 years.[
Bisphosphonate therapy
Bisphosphonate therapy is also effective for treating patients with recurrent LCH bone lesions.[
Evidence (bisphosphonate therapy):
Treatment of recurrent, refractory, or progressive high-risk disease: multisystem LCH
Data from the DAL group studies showed that patients with high-risk multisystem LCH who had progressive disease by week 6 of standard induction treatment or who did not achieve at least a partial response by week 12 had only a 10% chance of survival.[
Treatment options for patients with recurrent, refractory, or progressive high-risk multisystem LCH include the following:
Chemotherapy
Cladribine and cytarabine
Evidence (cladribine and cytarabine):
Clofarabine
Patients who did not respond to treatment with cladribine were reported to respond to treatment with clofarabine.[
Evidence (clofarabine):
Targeted therapy
MAPK inhibitors
The discovery that most patients with LCH have BRAF V600E or other variants that result in activation of the RAS pathway suggests that new therapies that target molecules within this pathway (MAP2K/ERK inhibitors) will become an important part of LCH therapy.
Evidence (vemurafenib):
Evidence (dabrafenib with or without trametinib):
Although malignancies such as squamous cell carcinoma have been reported in adults treated with MAPK inhibitors, such malignancies have not been reported in pediatric patients.[
Tyrosine kinase inhibitors
Evidence (tyrosine kinase inhibitors):
Hematopoietic stem cell transplant (HSCT)
HSCT has been used in patients with multisystem high–risk-organ involvement that is refractory to chemotherapy.[
Evidence (reduced-intensity conditioning vs. myeloablative conditioning for HSCT):
Treatment options for sclerosing cholangitis and macrophage activation
Seventy-five percent of children with sclerosing cholangitis will not respond to chemotherapy because the LCH is no longer active, but the fibrosis and sclerosis remain. Despite the limitations, liver biopsy may be the only way to distinguish active LCH from end-stage fibrosis. Liver transplant is the only alternate treatment when hepatic function worsens. A review of 60 patients with LCH (55 children) who underwent hepatic transplant for LCH-associated liver failure reported a 5-year survival rate of 82%. Posttransplant rejection occurred in 55% of patients, 22% of whom received a second transplant. The 5-year overall graft survival rate was 62% for patients who underwent deceased-donor liver transplant and 81% for patients who underwent living-donor liver transplant (not statistically significant). Nine patients died (15%). There was one case of posttransplant lymphoproliferative disease (PTLD), and no data on LCH recurrences. The authors conducted a literature review to identify an additional 50 patients with LCH who underwent a liver transplant. Of these patients, 47% experienced rejection, 11% had PTLD, and 8% had recurrent LCH. Seven patients (14%) with graft loss were treated with retransplant.[
Case reports and case series have documented the efficacy of MAPK inhibitors for the treatment of progressive hepatic LCH.[
Some patients develop a macrophage activation of their marrow. This could be confusing to clinicians, who may think the patient has hemophagocytic lymphohistiocytosis (HLH) and LCH. The best therapy for this life-threatening manifestation is not clear because it tends not to respond well to standard HLH therapy. Clofarabine, anti-CD52 antibody alemtuzumab, or reduced-intensity allogeneic stem cell transplant could be considered.[
Treatment options under clinical evaluation
Information about National Cancer Institute (NCI)–supported clinical trials can be found on the
The following is an example of a national and/or institutional clinical trial that is currently being conducted:
Assessment of Response to Treatment
Response assessment remains one of the most difficult areas in LCH therapy. It is easier when there is a specific area that can be monitored clinically or with ultrasonography, CT, PET, or MRI scans, such as the skin, hepato/splenomegaly, and other mass or lytic bone lesions. Clinical judgment, including evaluation of pain and other symptoms, remains important.
Bone lesions may take many months to heal and are difficult to evaluate on plain radiographs, although sclerosis around the periphery of a bone lesion suggests healing. CT or MRI scans are useful in assessing response of a soft tissue mass associated with a bone lesion, but are not particularly helpful in assessing the response of lytic bone lesions. Technetium Tc 99m bone scans remain positive in healing bone. PET scans may be helpful in monitoring the response to therapy because the intensity of the PET image diminishes with the response of lesions and healing of bone.[
For children or adults with lung LCH, pulmonary function testing and high-resolution CT scans are sensitive methods for detecting disease progression.[
Treatment Options No Longer Considered Effective for Childhood LCH
Treatments that have been used in the past but are no longer recommended for pediatric patients with LCH include cyclosporine [
Extensive surgery is also not indicated. For lesions of the mandible, extensive surgery may destroy any possibility of secondary tooth development. Surgical resection of groin or genital lesions is contraindicated because these lesions can be healed by chemotherapy.
Radiation therapy use in LCH has been significantly reduced in pediatric patients, and even low-dose radiation therapy should be limited to single-bone, vertebral body lesions or other single-bone lesions compressing the spinal cord or optic nerve that do not respond to chemotherapy or are painful and not amenable to other therapy.[
Late Disease and Treatment Effects of Childhood LCH
The reported frequency of long-term consequences of LCH has ranged from 20% to 70%. Children with low–risk-organ involvement (skin, bones, lymph nodes, or pituitary gland) have an approximately 20% chance of developing long-term sequelae.[
This wide variation in frequency results from case definition, sample size, therapy used, method of data collection, and follow-up duration. Quality-of-life studies have reported the following:
The late effects of LCH may occur in the following body systems:
Leukemia (usually acute myeloid leukemia) occurs after treatment, as does lymphoblastic lymphoma. Concurrent LCH and malignancy has been reported in a few patients, and some patients had their malignancy first, followed by development of LCH. Three patients with T-cell acute lymphoblastic leukemia (ALL) and aggressive LCH were reported and, as with all histiocytic disorders associated with or following lymphoblastic malignancies, the same genetic changes were found in both diseases, suggesting a shared clonal origin.[
A publication based on surveying Histiocyte Society members and a literature review reported 116 cases of childhood LCH-malignancy pairs. Leukemias and myeloproliferative disorders (n = 58; 50.0%) prevailed over solid tumors (n = 43; 37.1%) and lymphomas (n = 15; 12.9%). In most children, malignancy followed LCH (n = 69; 59.5%). However, ALL, including T-cell ALL, was sometimes seen preceding the onset of LCH or histiocytic neoplasms. The histiocytic disorder commonly carried the same underlying genetic findings as the preceding leukemia.[
Another study reported a population-based analysis of subsequent malignancies in pediatric patients in the Surveillance, Epidemiology, and End Results (SEER) Program database from 2000 to 2016.[
References:
The natural history of disease in adults with Langerhans cell histiocytosis (LCH) is poorly understood. Pulmonary LCH is the exception to this finding. Delays of many months or years commonly occur before adults are diagnosed, and they have long-term issues with chronic pain and fatigue. There are other differences from childhood LCH, including frequency of various bone sites of disease. It also appears that multisystem high-risk LCH in adults may be less aggressive than high-risk disease in children. A consensus group reported on the evaluation and treatment of adult patients with LCH.[
A multicenter retrospective review of 219 adult patients (aged >18 years) with LCH was conducted to assess long-term outcomes. The median follow-up was 74 months. The 5-year disease-free survival rate was 58%, and the overall survival (OS) rate was 88%. About one-third of deaths were LCH-related and occurred within 5 years of diagnosis. Second cancers occurred in 16.4% of cases (both hematologic and solid tumors). Deaths that occurred 5 or more years after diagnosis were predominantly non-LCH related (i.e., second cancers, chronic obstructive pulmonary disease, and cardiovascular disease). Compared with the general U.S. population, patients with LCH had a higher standard mortality ratio (SMR) if diagnosed before age 55 years (SMR, 5.94) or had multisystem disease (SMR, 4.12).[
Incidence
A population-based study in England found that the incidence of LCH in patients older than 15 years was 1.05 cases per 1 million people.[
More than 90% of adult pulmonary LCH cases occur in young adults who smoke, often more than 20 cigarettes per day.[
Clinical Presentation
Adult patients may have signs and symptoms of LCH for many months before receiving a definitive diagnosis and treatment. LCH in adults is often similar to that in children and appears to involve the same organs, although the incidence in each organ may be different. There is a predominance of lung disease in adults, usually occurring as single-system disease and closely associated with smoking and some unique biological characteristics. Most isolated lung LCH cases in adults are polyclonal and possibly reactive, while fewer lung LCH cases are monoclonal.[
A German registry with 121 registrants showed that 62% had single-organ involvement and 38% had multisystem involvement. Pulmonary LCH occurred in 34% of the total study population. Lungs are the most common site, followed by bone and skin involvement. The median age at diagnosis was 44 years (±12.8 years). All organ systems found in childhood LCH were seen in these adults, including endocrine and central nervous system (CNS), liver, spleen, bone marrow, and gastrointestinal tract. The major difference is the much higher incidence of isolated pulmonary LCH in adults, particularly in young adults who smoke. Other differences appear to be the more frequent involvement of genital and oral mucosa.[
Presenting signs and symptoms from published studies include the following:
Patients who present with isolated diabetes insipidus should be carefully observed for the onset of other signs or symptoms characteristic of LCH. At least 80% of patients with diabetes insipidus had involvement of other organ systems, including bone (68%), skin (57%), lung (39%), and lymph nodes (18%).[
Skin and oral cavity
Thirty-seven percent of adults with multifocal LCH have skin involvement. Skin-only LCH occurs but it is less common in adults than in children. The prognosis for adults with skin-only LCH is excellent, with a 5-year survival probability of 100%. The cutaneous involvement is clinically similar to that seen in children and may take many forms.[
Many patients have a papular rash with brown, red, or crusted areas ranging from the size of a pinhead to a dime. In the scalp, the rash is similar to that of seborrhea. Skin in the inguinal region, genitalia, or around the anus may have open ulcers that do not heal after antibacterial or antifungal therapy. The lesions are usually asymptomatic but may be pruritic or painful. In the mouth, swollen gums or ulcers along the cheeks, soft or hard palate, gingiva, or tongue may be signs of LCH.
Diagnosis of LCH is usually made by skin biopsy performed for persistent skin lesions.[
Bone
The relative frequency of bone involvement in adults differs from that in children. The frequency of mandible involvement is 30% in adults and 7% in children, and the frequency of skull involvement is 21% in adults and 40% in children.[
Lung
Pulmonary LCH in adults (40%–50% of patients) is usually single-system disease. However, in some patients, other organs may be involved, including bone, skin, and hypothalamus/pituitary.[
Pulmonary LCH is more prevalent in smokers than in nonsmokers, and the male-to-female ratio is nearly 1:1, depending on the incidence of smoking in the population studied.[
Pulmonary LCH can be diagnosed by bronchoscopy in about 50% of adult patients, as defined by immunostaining of at least 5% of CD1a-positive cells in the sample.[
The LCH cells in adult lung lesions were shown to be mature dendritic cells expressing high levels of the accessory molecules CD80 and CD86, unlike Langerhans cells (LCs) found in other lung disorders.[
In a review of 206 patients with pulmonary LCH from France (median follow-up, 5 years), the 10-year survival rate was 93%.[
Favorable prognostic factors for adult LCH of the lung include the following:
Unfavorable prognostic factors for adult LCH of the lung include the following:
Most patients have a variable course, with stable disease in some patients and relapses and progression of respiratory dysfunction in others, often after many years.[
The following results may be noted on diagnostic tests:
Liver
In one study, liver involvement was reported in 27% of adult patients with multiorgan disease.[
The early histopathological stage of liver LCH includes infiltration of CD1a-positive cells and periductal fibrosis with inflammatory infiltrates with or without steatosis. The late stage is biliary tree sclerosis. Treatment with ursodeoxycholic acid may be helpful.[
Endocrine system
Diabetes insipidus occurs in 25% of patients and may precede the diagnosis of LCH.[
Central nervous system (CNS)
The most frequent abnormalities in the CNS are enlargement of the pituitary, its stalk, and/or the hypothalamus. Brain involvement is typically in the cerebellum, pons, and basal ganglia, with abnormalities seen on the T2 and fluid-attenuated inversion recovery (FLAIR) images. Some patients have only imaging changes, but others have ataxia, dysmetria, dysarthria, and behavioral and psychological difficulties.[
Bone marrow and lymph nodes
Bone marrow involvement with LCH is uncommon and is usually heralded by abnormal blood counts, which could also be a sign of an underlying malignancy.[
Gastrointestinal and cardiovascular systems
Gastrointestinal involvement is rare and usually presents with diarrhea and pain.[
Multisystem disease
In a large series of patients from the Mayo Clinic, 31% had multisystem LCH, compared with 69% registered on the Histiocyte Society adult registry. This finding likely reflects referral bias.[
LCH and associated malignancies
Adult patients with LCH have higher rates of malignancies than do age-matched patients without LCH, by ratios of 2 to 4, depending on patient age.[
The association between LCH and malignancy occurs more frequently than would be expected by chance, based on questionnaires sent to investigators in the Histiocyte Society and a literature review. In one publication, LCH-malignancy cases were collected between 1991 and 2015. A total of 285 LCH-malignancies were seen in 270 patients. In 154 adults with LCH, solid tumors were reported in 61 patients (39.6%), lymphomas in 56 patients (36.4%), and leukemias and myeloproliferative disorders in 37 patients (24.0%). Thyroid malignancy was also seen with some frequency. In adults, LCH and malignancy occurred concurrently in 69 patients (44.8%).[
A review of Surveillance, Epidemiology, and End Results (SEER) Program data for subsequent malignancies in 456 adults with LCH found 16 cases.[
A study of 156 adults with LCH reported on the relationship of LCH with the BRAF V600E variant and secondary primary malignancies.[
Diagnostic Evaluation
Positron emission tomography (PET) scans are the most sensitive modality for finding affected sites and are done to diagnose people with LCH.[
Treatment of Adult LCH
Treatment options for adult LCH
The lack of clinical trials limits the ability to make evidence-based recommendations for adult patients with LCH.
Many investigators have previously recommended treatment according to the guidelines for childhood LCH. It is unclear, however, whether adult LCH responds as well as the childhood form of the disease. In addition, the drugs used in the treatment of children are not as well tolerated when used in adults. Excessive neurological toxicity from vinblastine, for example, prompted closure of the LCH-A1 trial. BRAF and MEK inhibitors are increasingly used as initial treatment for many adults.[
An international expert consensus panel has proposed a treatment algorithm for adult patients and is summarized below.[
Treatment of pulmonary LCH
It is difficult to judge the effectiveness of various treatments for pulmonary LCH because patients can recover spontaneously or have stable disease without treatment.
Treatment options for adult patients with pulmonary LCH include the following:
The best strategy for follow-up of pulmonary LCH includes physical examination, chest radiographs, lung function tests, and high-resolution CT scans.[
Treatment of bone LCH
Treatment options for adult patients with bone LCH include the following:
Treatment of single-system skin disease
Treatment options for adult patients with single-system skin disease include the following:
Oral isotretinoin has induced remissions in some adult patients with refractory skin LCH.[
Chemotherapy and radiation therapy for the treatment of other single-system disease and multisystem disease
Evidence (chemotherapy for the treatment of other single-system disease [not mentioned above] and multisystem disease):
Radiation therapy. A report of stereotactic radiosurgery for the treatment of adult patients with pituitary LCH showed efficacy in reducing the masses.[
Targeted therapies for the treatment of single-system and multisystem disease
Early reports on the use of targeted therapies for adult patients with low-risk or high-risk LCH sites include the following:
Of four patients with LCH who were treated with vemurafenib on the VE-BASKET (NCT01524978) trial, one patient had a complete response and three patients had partial responses.[
One series reported on six patients who were treated with BRAF inhibitors as initial therapy.[
A proof-of-concept clinical trial of cobimetinib, an oral inhibitor of MEK1 and MEK2, was carried out in 18 adult patients with various histiocytoses, including histiocytic sarcomas. Patients were treated regardless of genomic findings. Responses were seen in patients with ARAF, BRAF, NRAS, KRAS, MAP2K1, and MAP2K2 variants. The overall response rate was 89%, with responses being durable. At 1 year, 94% of patients remained progression free.[
Early results of targeted inhibitor therapy are encouraging, but many questions remain, particularly the optimal duration of therapy and the reactivation rate after therapy is discontinued. A BRAF inhibitor in combination with a MEK inhibitor have been shown to be effective in patients with melanoma who have BRAF variants (with reduced toxicity). This combination may also be effective in patients with LCH, but it is generally not used for patients with histiocytic diseases.[
Treatment options under clinical evaluation
Information about National Cancer Institute (NCI)–supported clinical trials can be found on the
The following is an example of a national and/or institutional clinical trial that is currently being conducted:
Current Clinical Trials
Use our
References:
The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.
Histopathological, Immunologic, and Cytogenetic Characteristics of LCH
Added text about the results of a study that used a mouse model with the BRAF V600E variant under control of Scl or Map17 gene promoters and added additional insights into the biology of neurodegenerative LCH (cited Wilk et al. as reference 31).
Childhood LCH
Added text to state that although malignancies such as squamous cell carcinoma have been reported in adults treated with MAPK inhibitors, such malignancies have not been reported in pediatric patients. Like adults, children develop acneform rashes, photosensitivity, diarrhea, and, sometimes, myalgias.
Added text to state that case reports and case series have documented the efficacy of MAPK inhibitors for the treatment of progressive hepatic LCH (cited Lee et al. as reference 159).
Added NCT04079179 as an open clinical trial for children or adults with relapsed or refractory LCH or other newly diagnosed, relapsed, or refractory histiocytic disorders.
Revised text to state that response assessment is easier when there is a specific area that can be monitored clinically or with ultrasonography, computed tomography, positron emission tomography, or magnetic resonance imaging scans, such as the skin, hepato/splenomegaly, and other mass or lytic bone lesions.
Revised text to state that patients with multisystem involvement have a reported rate of long-term complications of approximately 70% when treatment was only 6 months. However, the extent of long-term sequelae in patients who are treated for a year has not been reported.
Adult LCH
Added text to state that treatment discussions continue, particularly regarding optimal first-line therapy for adults with LCH.
Added text about the results of a multicenter retrospective review of 219 adult patients with LCH that was conducted to assess long-term outcomes (cited Goyal et al. as reference 2).
Added Treatment options under clinical evaluation as a new subsection.
This summary is written and maintained by the
Purpose of This Summary
This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the treatment of childhood and adult Langerhans cell histiocytosis. It is intended as a resource to inform and assist clinicians in the care of their patients. It does not provide formal guidelines or recommendations for making health care decisions.
Reviewers and Updates
This summary is reviewed regularly and updated as necessary by the
Board members review recently published articles each month to determine whether an article should:
Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.
The lead reviewers for Langerhans Cell Histiocytosis Treatment are:
Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website's
Levels of Evidence
Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Pediatric Treatment Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.
Permission to Use This Summary
PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as "NCI's PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary]."
The preferred citation for this PDQ summary is:
PDQ® Pediatric Treatment Editorial Board. PDQ Langerhans Cell Histiocytosis Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at:
Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in
Disclaimer
Based on the strength of the available evidence, treatment options may be described as either "standard" or "under clinical evaluation." These classifications should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the
Contact Us
More information about contacting us or receiving help with the Cancer.gov website can be found on our
Last Revised: 2024-06-14
This information does not replace the advice of a doctor. Ignite Healthwise, LLC, disclaims any warranty or liability for your use of this information. Your use of this information means that you agree to the
Healthwise, Healthwise for every health decision, and the Healthwise logo are trademarks of Ignite Healthwise, LLC.
Individual and family medical and dental insurance plans are insured by Cigna Health and Life Insurance Company (CHLIC), Cigna HealthCare of Arizona, Inc., Cigna HealthCare of Illinois, Inc., Cigna HealthCare of Georgia, Inc., Cigna HealthCare of North Carolina, Inc., Cigna HealthCare of South Carolina, Inc., and Cigna HealthCare of Texas, Inc. Group health insurance and health benefit plans are insured or administered by CHLIC, Connecticut General Life Insurance Company (CGLIC), or their affiliates (see
All insurance policies and group benefit plans contain exclusions and limitations. For availability, costs and complete details of coverage, contact a licensed agent or Cigna sales representative. This website is not intended for residents of New Mexico.